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We develop the scale transformed power prior for settings where historical and
current data involve different data types, such as binary and continuous data.
This situation arises often in clinical trials, for example, when historical data
involve binary responses and the current data involve some other type of con-
tinuous or discrete outcome. The power prior, proposed by Ibrahim and Chen,
does not address the issue of different data types. Herein, we develop a new type
of power prior, which we call the scale transformed power prior (straPP). The
straPP is constructed by transforming the power prior for the historical data by
rescaling the parameter using a function of the Fisher information matrices for
the historical and current data models, thereby shifting the scale of the param-
eter vector from that of the historical to that of the current data. Examples are
presented to motivate the need for such a transformation, and simulation stud-
ies are presented to illustrate the performance advantages of the straPP over the
power prior and other informative and noninformative priors. A real dataset
from a clinical trial undertaken to study a novel transitional care model for stroke
survivors is used to illustrate the methodology.
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1 INTRODUCTION

The availability and use of historical data have become increasingly common in the design and analysis of clinical trials
and observational studies covering a wide array of research applications. The incorporation of historical data has been a
widely discussed topic over the past 25 years with a vast literature including the use of hierarchical models and various
informative priors. One such tool for incorporating historical data into a Bayesian design or analysis is the power prior.1
The power prior has been used by many researchers in applications for the design and analysis of clinical trials and
observational studies.2-4 The use of the power prior has also been explored in epidemiological studies and clinical trials.5,6

A thorough review of the power prior and its variants, with a detailed discussion on the theory, and numerous applications
of the power prior has been conducted.7 Notably, the power prior has been modified and adapted in numerous ways

Abbreviations: Gen-straPP, generalized scale transformed power prior; straPP, scale transformed power prior
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2 ALT et al.

to, for example, enable the use of historical data in biosimilars trials,8 allow for multiple historical datasets,1,9,10 and
facilitate adaptive clinical trial design.11-13 Additional popular priors that incorporate historical data include the robust
meta-analytic-predictive (MAP) prior14 and the commensurate prior.3 A challenging issue that arises in a variety of study
designs or analyses is when the historical and current data have different data types. For example, scenarios arise often in
clinical trials in which the historical data may be binary, such as response data from a Phase 2 trial, but the current data
may be continuous such as with a normally distributed outcome in a Phase 3 trial.

The power prior1 and its adaptations are not well equipped to handle this setting since the scales of the response
variables in the historical and current data may be quite different and, as a result, the regression coefficients for the corre-
sponding models may have noncomparable magnitudes. To solve this dilemma, the regression coefficients from the power
prior based on the historical data need to be scaled in such a way so as to result in a reasonable prior for the regression
coefficients in the current data likelihood. To achieve such a transformation, we propose to scale the regression coefficient
by the matrix square root of the Fisher information matrix via the spectral decomposition (ie, the eigendecomposition).
We call this newly scaled power prior the scale transformed power prior (straPP). We use the term “historical data” in a
general sense. The historical data that are incorporated could be for a single arm (eg, only a control arm) or for multiple
arms of a study (eg, treated and control arms). We focus on the latter in this article. The straPP and its generalization,
which we refer to as the generalized straPP, are a broad class of priors closely related to the power prior and commen-
surate prior. A key aspect of the power prior is that the historical and current data share a common parameter, whereas
the commensurate prior3 assumes the parameter for the current data is normally distributed about the historical data
parameter.

The rest of this article is organized as follows. In Section 2, we give a detailed motivating example motivating the
straPP for a Bayesian analysis. Section 3 gives a brief review of existing priors that utilize historical data. Section 4 presents
the proposed methodology for the straPP in detail, develops the generalized straPP, and discusses connections with the
commensurate prior, while focusing on the straPP for generalized linear models (GLMs). Section 5 presents detailed
simulation studies using the straPP and its generalizations under various settings and data types within the class of GLMs.
Section 6 presents a real data analysis using the straPP and its generalizations to demonstrate the advantages of the straPP
over other priors. We close the article with some discussion in Section 7.

2 MOTIVATING EXAMPLE

The Comprehensive Post-Acute Stroke Services (COMPASS) study15 was a two-arm, cluster-randomized pragmatic trial
designed to evaluate the effectiveness of a novel transitional care model (COMPASS care model) compared to usual care
in mild-to-moderate stroke and transient ischemic attack (TIA) patients across a diverse set of hospitals within North
Carolina, USA. The study consisted of two phases. In Phase 1 of the COMPASS study, 40 hospital units were randomized
in a 1:1 allocation scheme to either implement the COMPASS care model (ie, the intervention) or to maintain their usual
care practices. The primary comparative effectiveness analyses for the COMPASS study were based on data from Phase
I and can be found in Duncan et al.16 During Phase I, the study team provided hospitals randomized to the intervention
arm with significant support to help with implementation of the COMPASS care model. In a second phase (Phase 2;
an optional extension phase), intervention hospitals attempted to sustain real-world delivery of the intervention with
minimal support. Moreover, interested usual care hospitals that continued into Phase 2 were transitioned to provide the
intervention as their standard of care. Thus, Phase 2 comparative effectiveness data were considered exploratory and were
not published with the primary results. One of the exploratory objectives of the COMPASS study was to assess whether
intervention arm patients who received a specialized electronic care plan (eCare plan) had better health outcomes than
patients who did not after adjustment for key covariates to account for potential selection bias regarding which patients
choose to attend the clinic visit at which they received a customized eCare plan.

We consider that exploratory objective and, in part motivated by the fact that receipt of the eCare plan is a
participant-specific (not cluster-specific) variable, we do not address the clustered nature of the COMPASS study in this
article. Of note, Phase 2 of the COMPASS study added a continuous measure of physical health (the PROMIS Global
Health Scale) that was not collected in Phase 1. We consider the analysis of Phase 2 patient outcomes based on the PROMIS
measure from one large hospital that provided the COMPASS care model during both phases of the study. This relatively
large hospital was selected due to having provided the intervention with consistency and high fidelity in both phases of
the study. We use data from Phase 1 as historical data to inform analysis of the Phase 2 PROMIS data.
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ALT et al. 3

Since the PROMIS outcome was not collected for Phase 1 patients, we consider the incidence of one or more falls as the
Phase 1 outcome. This variable is an indicator of whether the participant had at least one fall between hospital discharge
and 90 days post-stroke (no falls versus at least one fall). As the historical and current outcomes measure related concepts
(global disability versus global health) but are different scales (eg, one binary, one continuous), these datasets make an
ideal case study for comparing performance of the straPP to other commonly used informative prior distributions. In fact,
we were able to investigate this relationship empirically as the incidence of falls outcome was collected during Phase 2 of
the COMPASS study. Using a simple logistic regression model with incidence of falls as the outcome and the continuous
PROMIS measure as the covariate, we estimated the area under the receiver operating characteristic (ROC) curve to be
0.64 indicating fair predictive ability of the incidence of falls for the PROMIS measure. Accordingly, the Phase 1 dataset
based on incidence of falls may be useful for inference on covariate effects for the PROMIS Global Health as measured in
Phase 2.

The covariates of interest for our analyses were an indicator for receipt of the eCare plan within 30 days of hospital
discharge, an indicator for having a history of stroke or TIA, an indicator for having non-White race, and categorized NIH
stroke scale score (NIHSS; 0=no stroke symptoms, 1-4=minor symptoms, and ≥5=moderate-to-severe symptoms).

The analyses presented in this article are for illustration purposes only as they make use of data only from complete
cases from the aforementioned hospital that participated in the COMPASS study. A more sophisticated analysis that
incorporates information from patients with partially missing covariates and/or missing outcomes is beyond the scope of
this article.

3 EXISTING PRIORS FOR INCORPORATION OF HISTORICAL DATA

3.1 The power prior

The power prior1 is an informative prior derived from historical data that contain information on the same response and
covariates as measured in a current study. The power prior, denoted 𝜋p(⋅), is a meaningful semi-automatic informative
prior for the p × 1 parameter of interest 𝜽 and is given by

𝜋p(𝜽|D0) ∝ (𝜽|D0)a0
𝜋0(𝜽), (1)

where (𝜽|D0) denotes the historical data likelihood, D0 = (n0,Y0,X0) denotes the historical data, n0 denotes the sample
size, Y0 denotes the n0 × 1 response vector, and X0 denotes the n0 × p covariate matrix. The distribution 𝜋0(𝜽) is called
the initial prior and is often taken to be noninformative. The scalar 0 ≤ a0 ≤ 1 is called the discounting parameter and its
value controls the weight given to the historical data. For example, a value of a0 = 0 discards the historical data altogether
resulting in a prior equal to the initial prior (complete discounting) and a value of a0 = 1 weights the historical and current
data equally. The power prior is robust under many settings1 but does not account for scale differences in the response
variable for the historical and current data.

3.1.1 Extensions of the power prior

Several extensions and generalizations of the power prior have been developed including several that treat a0 as a random
variable. Additional articles provide information on how to choose a0.17,18 The normalized power prior19 models a0 as a
random variable, resulting in a joint distribution for a0 and 𝜽, written as

𝜋np(𝜽, a0|D0) =
1

C(a0)
(𝜽|D0)a0

𝜋0(𝜽)𝜋(a0), (2)

where C(a0) = ∫ (𝜽|D0)a0𝜋0(𝜽)d𝜽 is the normalizing constant for the conditional distribution for 𝜽 given a0 and 𝜋(a0) is
a marginal prior for a0.

The partial-borrowing power prior20 provides a useful generalization of the power prior described above. This
power prior borrows information on a subset of parameters common to both the historical and current models. Let
𝜽 = (𝜽1,𝜽2,𝜽3), where 𝜽1 is a set of parameters common to both models, 𝜽2 is a set of parameters that pertain only to the
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4 ALT et al.

current data model, and 𝜽3 is a set of parameters that pertain only to the historical data model. The partial-borrowing
power prior is given as

𝜋pb(𝜽|D0) ∝ (𝜽1,𝜽3|D0)a0
𝜋0(𝜽), (3)

where 𝜋0(𝜽) is an initial prior for all components of 𝜽. This is a flexible extension of the power prior since there are many
cases where historical information may only be available for certain parameters (eg, parameters associated with a control
group).

Additionally, the power prior or normalized power prior can accommodate multiple historical datasets.21 Focusing
on the power prior, suppose there are K historical datasets, denoted D0k for k = 1, … ,K. Let D0 = (D01, … ,D0K) and
a0 = (a01, … , a0K), then the power prior is defined as

𝜋mp(𝜽|D0) ∝

[ K∏

k=1
(𝜽|D0k)a0k

]

𝜋0(𝜽). (4)

The development for a normalized power prior for multiple historical datasets is analogous. When a0k = a0 for all k, the
power prior for multiple datasets effectively pools the historical data.

3.2 Commensurate prior

Unlike the power prior, the commensurate prior3 allows the model parameters in the historical and current data models,
denoted 𝜼 and 𝜽, respectively, to be different. The influence of the historical data is then controlled by the commen-
surability parameter, 𝜏, which characterizes the degree to which the historical and current data are comparable. The
commensurate prior3 can be written as

𝜋c(𝜽|D0, 𝜼, 𝜏) ∝ (𝜼|D0)Np
(
𝜽|𝜼, 𝜏−1Ip

)
𝜋0(𝜽), (5)

where 𝜋0(⋅) and (𝜽|D0) are as defined in (1) and Ip is the p × p identity matrix.

4 THE SCALE TRANSFORMED POWER PRIOR

In this section, we develop the straPP which can be derived through a transformation of the regression coefficients in a
power prior. Thus, the straPP is explicitly connected to the power prior. It can be viewed as a transformation of the power
prior that is designed to modify the scale of the historical data model parameter 𝜼 to better align with the current data
model. The derivation for the straPP is based on the assumption that the standardized parameter values are approximately
equal for the historical and current data models and it makes sense to consider such a prior when historical and cur-
rent data have different outcomes, but nonetheless outcomes that measure related characteristics (eg, aspects of physical
disability).

Let 𝜼 and 𝜽 denote the parameters for the historical and current data models, respectively. Denote the Fisher informa-
tion matrix for the current data model by I(𝜽) and consider its square root I1∕2(𝜽) obtained via a spectral decomposition,
that is, I1∕2(𝜽) = P(𝜽)Λ1∕2(𝜽)P(𝜽)′, where Λ1∕2(𝜽) is a diagonal matrix consisting of square roots of the eigenvalues of I(𝜽)
and P(𝜽) is a orthogonal matrix of corresponding eigenvectors. Note that I−1∕2(𝜽) is the square root of the asymptotic
covariance matrix for the maximum likelihood estimator for 𝜽. The quantity I1∕2(𝜽)𝜽 can thus be viewed as a standard-
ized or scaled version of 𝜽. The resulting quantity is unitless and the scaling action can be interpreted as converting the
parameter from the original scale into standard deviation units based on the asymptotic covariance matrix. One can of
course define the analogous quantities for 𝜼. Formally, the assumption of equal standardized parameter values can be
expressed as

I1∕2
0 (𝜼)𝜼 = I1∕2

1 (𝜽)𝜽, (6)
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ALT et al. 5

where I0(⋅) and I1(⋅) denote the Fisher information matrix based on the historical data model and the current data model,
respectively. The solution to (6) is denoted by 𝜼 = g(𝜽) for some function g(𝜽). In order to rescale the power prior in (1)
by applying the transformation in (6), one would have to solve for the historical data model parameter vector. One can
take the power prior, indexed by parameter 𝜼 ≡ g(𝜽), and apply the transformation to obtain a prior for 𝜽 that is rescaled
to match the current data model. The straPP, denoted 𝜋s(⋅), is then

𝜋s(𝜽|D0) ∝ (g(𝜽)|D0)a0
𝜋0(g(𝜽))

|
|
|
|

dg(𝜽)
d𝜽

|
|
|
|
,

where 𝜼 = g(𝜽), a0, and 𝜋0(⋅) are as described in Section 3.1, and |dg(𝜽)∕d𝜽| is the determinant of the Jacobian matrix
for the transformation. The expression for the Jacobian matrix can be found in Appendix A of the Supporting Informa-
tion. The fact that the transformation in (6) is locally one-to-one follows directly from the implicit function theorem.22

As a result, propriety of the power prior implies propriety of the straPP. Establishing propriety of the power prior
for GLMs and survival models has received significant treatment in the literature,21,23,24 among others. By locally
one-to-one, we mean that the mapping 𝜼→ I1∕2

0 (𝜼)𝜼will not generally be one-to-one for the full domain of 𝜼 for all mod-
els. We discuss the implications of the transformation being only locally one-to-one in Appendix B of the Supporting
Information.

When the expression in (6) can be solved for 𝜼, analysis using Markov chain Monte Carlo methods implemented in
standard software can be used to perform analysis with the straPP (eg, Hamiltonian Monte Carlo in rstan25). This is
still the case when (6) cannot be solved for 𝜼 but the procedure is slightly more involved. Full details on model fitting
using the straPP are given in Appendix C of the Supporting Information. This includes an efficient procedure that can be
applied when the expression in (6) can be solved for 𝜽 but not 𝜼, termed complementary sampling, and a procedure that
can be applied when the expression cannot be solved for either parameter.

When a0 = 0 and 𝜋0(⋅) is a uniform improper prior, the straPP will be an improper prior and its use may result in
an improper posterior since the kernel of the straPP is simply the determinant of the Jacobian matrix. To avoid this
complexity, we simply define the straPP to be equal to the initial prior when a0 = 0. The intended purpose of the straPP
is for cases where one would want to incorporate historical data to some degree in the analysis of the current data. Thus,
the case where a0 = 0 is of no practical relevance.

Lastly, it is straightforward to develop the straPP for multiple historical datasets. However, since the straPP transfor-
mation is a function of the historical data covariates, the covariate matrices for the datasets must be stacked in order
to have a single, well-defined transformation. We discuss how to develop the straPP for multiple historical datasets in
Appendix D of the Supporting Information.

4.1 The normalized straPP

As an alternative to choosing a fixed value of a0, one can develop a normalized straPP. The normalized straPP can be
derived by applying the transformation in (6) to a normalized power prior. The normalized straPP, denoted 𝜋ns(𝜽, a0|D0),
is given by

𝜋ns(𝜽, a0|D0) =
1

C(a0)
(g(𝜽)|D0)a0

𝜋0(g(𝜽))𝜋(a0)
|
|
|
|

dg(𝜽)
d𝜽

|
|
|
|
, (7)

where, in this scenario, the normalizing constant is calculated before the scale transformation, such that

C(a0) =
∫
(𝜼|D0)a0

𝜋0(𝜼)d𝜼.

For computational simplicity, the power prior can be formulated using a normal approximation to the historical data
likelihood.7 Such a power prior is referred to as an asymptotic power prior. Under the normal approximation, the
normalizing constant for a normalized asymptotic power prior has a closed form, greatly simplifying computations.
For our implementation of the normalized straPP, we develop the prior based on a normalized asymptotic power
prior.
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6 ALT et al.

4.2 Partial-borrowing with the straPP

One may wish to utilize the straPP to borrow information for a subset of components in the parameter vector. Let the
p × 1 vector 𝜽 be partitioned into two vectors such that 𝜽 = (𝜽1,𝜽2), where 𝜽1 is r × 1 and 𝜽2 is (p − r) × 1. Suppose we
would like to specify a straPP that borrows information on 𝜽1 but does not borrow information on 𝜽2. To arrive at a partial
borrowing straPP, we integrate over the parameters for which information will not be borrowed and further include an
initial prior for the parameters only in the new data model. Specifically, the partial-borrowing straPP is given by

𝜋pbs(𝜽|D0) =
[

∫
𝜋s(𝜽1, ̃𝜽2)d ̃𝜽2

]

𝜋0(𝜽2), (8)

where ̃𝜽2 represents the parameters induced the straPP transformation but on which information will not be borrowed.
The initial prior 𝜋0(𝜽2) therefore pertains to the parameters 𝜽2 only informed by the current data model. In practice, the
integration in (8) is conducted implicitly in the MCMC scheme, not analytically.

The partial-borrowing straPP enables use of the straPP in a variety of settings. Perhaps the most intuitive example is
for situations where it is not appropriate to borrow information on the intercept parameter for the current data model.
For example, the partial-borrowing straPP may be desirable when the historical response data is binary and the current
response data is normal. In this case, the intercept terms will often have no logical connection even though covari-
ate effects are related. Another instance where the partial-borrowing straPP may be preferred is the case where it is
of paramount interest to borrow information on a treatment effect parameter, but borrowing information on nuisance
parameters in the regression model is avoided simply to add a degree of robustness provided the current data alone are
sufficient to estimate the other covariate effects.

4.3 The generalized scale transformed power prior

The straPP is derived under the assumption that the standardized parameter values for the historical and current data
models are equal. Such an assumption leads to a reasonable transformation to scale the parameter in a power prior when
the historical data model is not the same as that of the current data. Nonetheless it is important to be able to conduct
sensitivity analyses of the core assumption of the straPP. Thus, it is useful to develop a generalization of the straPP that
provides a degree of robustness when the assumption of equal standardized parameter values does not hold. Towards this
goal, we develop a generalized scale transformed power prior (Gen-straPP), in which we specify

I1∕2
0 (𝜼)𝜼 = I1∕2

1 (𝜽)𝜽 + c0, (9)

where c0 is a p × 1 vector that allows component-specific deviations from the assumption of equal standardized parameter
values for 𝜼 and 𝜽. We denote the transformation as 𝜼 = gc0(𝜽). We note that c0 = 0 corresponds to the straPP. In practice,
the most natural choice would be to take c0 to be a random vector and assign it a prior distribution. Therefore, we suggest
taking c0 to be a random vector and assign it a normal prior, that is, c0 ∼ Np(0, 𝜔0Ip), where the variance parameter
𝜔0 is given a standard half-normal hyperprior. The Gen-straPP can be derived from the power prior in (1) using the
transformation in (9) as

𝜋gs(𝜽, c0, 𝜔0|D0) ∝ 
(

gc0(𝜽)
|
|
|
D0

)a0
𝜋0

(
gc0(𝜽)

) ||
|
|
|

dgc0(𝜽)
d𝜽

|
|
|
|
|

𝜋0(c0, 𝜔0), (10)

where 𝜋0(c0, 𝜔0) denotes the joint prior for c0 and 𝜔0. The transformation to obtain the Gen-straPP is a combination of
(9) and an identity transformation for c0. It is straightforward to show the determinant of that full-rank transformation is
equal to the determinant shown in (10). Extending the Gen-straPP for partial-borrowing is equally straightforward.

The Gen-straPP is closely related to a commensurate prior formulated on the standardized parameter values. To see
this, note that the Gen-straPP transformation in (9) can be rewritten as

I1∕2
1 (𝜽)𝜽 = I1∕2

0 (𝜼)𝜼 − c0.
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ALT et al. 7

Let 𝜽∗ = I1∕2
1 (𝜽)𝜽 denote the standardized current data model parameter and 𝜼∗ = I1∕2

0 (𝜼)𝜼 denote the standardized his-
torical data model parameter. For c0 ∼ Np(0, 𝜔0Ip) and given 𝜼∗, the standardized current data model parameter satisfies
𝜽
∗ | 𝜼∗ ∼ Np(𝜼∗, 𝜔0Ip). This is precisely the form of a commensurate prior and thus the hyperparameter 𝜔0 is closely

related to the commensurability parameter in a commensurate prior. In the context of the Gen-straPP, commensurability
pertains to the standardized parameter values.

4.4 The straPP for GLMs

For the remainder of the article, we assume that outcomes for the historical and current data arise from the class of
GLMs. Without loss of generality, we focus on development of the straPP (conditional on dispersion parameters) and note
that with minor modifications one can similarly develop the partial-borrowing straPP, Gen-straPP, or partial-borrowing
Gen-straPP. When discussing GLMs, in a departure from previous notation, we represent the parameters for the historical
data model as 𝝃0 = (𝜷0, 𝜙0) and current data model as 𝝃1 = (𝜷1, 𝜙1), where 𝜷0 and 𝜷1 are the regression parameter vectors
and 𝜙0 and 𝜙1 are the scalar dispersion parameters.

Let k index the historical (k = 0) and current (k = 1) data models, YT
k = (yk1, … , yknk ) be the nk × 1 response vector,

Xk be the nk × p covariate matrix (with intercept) with xT
ki denoting the covariate vector for the ith observation, and 𝝃k =

(𝜷k, 𝜙k) be the GLM parameters. The likelihood contribution for the ith case for dataset k can be written as

f (yki|𝝃k) = exp
[

𝜙k{ykihk(xT
ki𝜷k) − bk(hk(xT

ki𝜷k)) − ck(yki)} −
1
2

sk(yki, 𝜙k)
]

, (11)

where hk(⋅) is the link function, and bk(⋅), ck(⋅), and sk(⋅) are known functions based on the particular GLM family member.
For the canonical link function, the p × p Fisher information matrix for the regression parameters based on the likelihood
associated with (11) is given as

Ik(𝝃k|X0) = 𝜙kXT
0 Vk(𝜷k)X0, (12)

where Vk(𝜷k) = diag
{

vki(𝜷k)
}

, with vki(𝜷k) = ̈bk(hk(xT
0i𝜷k)) for i = 1, … ,nk. Here diag

{
vki(𝜷k)

}
denotes a diagonal matrix

with the (i, i) element as
(

vki(𝜷k)
)

and ̈bk(⋅) represents the second derivative of the function bk(⋅) taken with respect to its
scalar argument.

Consider a situation in which we only wish to borrow information on the regression parameters. Based on the general
form of (12), the transformation leading to the straPP for GLMs is given by

I1∕2
0

(
𝝃0|X0

)
𝜷0 = I1∕2

1
(
𝝃1 |X0) 𝜷1. (13)

Solving for 𝜷1, we denote the transformation implied by (13) as greg

(

𝝃1, 𝜙0
|
|
|
X0

)

. Note that in (13), we develop the
straPP by computing the Fisher information matrices for the current and historical data models using the covari-
ate matrix X0 associated with the historical data. This is done to ensure the effective sample size for the straPP is
equal to that of the power prior from which it is derived and to allow the straPP to be constructed using information
entirely derived from the historical data (eg, outcome and covariates) which is appealing. The straPP for GLMs can be
written as

𝜋s(𝜷1, 𝜙0|𝜙1,D0) ∝ 
(

greg

(

𝝃1, 𝜙0
|
|
|
X0

)

, 𝜙0
|
|
|
D0

)a0
𝜋0

(

greg

(

𝝃1, 𝜙0
|
|
|
X0

)

, 𝜙0

)
|
|
|
|
|
|
|

dgreg

(

𝝃1, 𝜙0
|
|
|
X0

)

d𝜷1

|
|
|
|
|
|
|

, (14)

where 𝜋0

(

greg

(

𝝃1, 𝜙0
|
|
|
X0

)

, 𝜙0

)

is the initial prior for 𝝃0 and 𝜙0. Similar to above developments, the transformation to
obtain the partial-borrowing straPP for GLMs is a combination of (13) and identity transformations for 𝜙0 and 𝜙1. It is
straightforward to show the determinant of that full-rank transformation is equal to the determinant in (14). The expres-
sion for the Jacobian matrix where both the historical and current data models have the canonical link can be found in
Appendix E of the Supporting Information.
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8 ALT et al.

4.5 The linear model special case

For illustrative purposes, we consider a special case in which both the historical and current data arise from linear regres-
sion models with known variances (ie, 𝜎2

0 and 𝜎2
1 are known), henceforth referred to as the normal-normal case. When

variances are known, 𝝃k = 𝜷k and so, for ease of exposition, we simply write 𝜷0 and 𝜷1 to represent the complete parame-
ter vector for the historical and current data models, respectively. This simple example is helpful for pedagogical reasons
as an elegant closed-form can be derived for the straPP which provides insight into its rescaling properties. For the lin-
ear model, the Fisher information matrix in (12) reduces to Ik(𝜷k|X0) = 𝜎−2

k XT
0 X0, where 𝜙k = 𝜎−2

k is the inverse variance.
Based on this, the transformation leading to the straPP in (6) reduces to 𝜷0∕𝜎0 = 𝜷1∕𝜎1, which nicely illustrates the equal-
ity of parameter values once scaled by the standard deviations for the associated outcomes. In this simple setting, both
the power prior and the straPP can be shown to be normal distributions, with power prior as

𝜷1
PP∼ N

(

(XT
0 X0)−1XT

0 Y0,

(
𝜎

2
0

a0

)

(XT
0 X0)−1

)

. (15)

For deriving the straPP, one can understand the scale transformation as a variable transformation on the regression
parameter of the power prior for the historical data. We can write the power prior for the historical parameter as 𝜷0 ∼
N
(
(XT

0 X0)−1XT
0 Y0,

(
𝜎

2
0∕a0

)
(XT

0 X0)−1). The straPP transformation 𝜷1 = (𝜎1∕𝜎0)𝜷0 is a function of the historical parameter,
thus the current regression parameter is also distributed normally with mean (𝜎1∕𝜎0)E(𝜷0) and variance (𝜎2

1∕𝜎
2
0 )Var(𝜷0).

We have

𝜷1
straPP∼ N

(
𝜎1

𝜎0
(XT

0 X0)−1XT
0 Y0,

(
𝜎

2
1

a0

)

(XT
0 X0)−1

)

. (16)

One can see that the mean for the power prior in (15) is equal to the maximum likelihood estimate of 𝜷 based on the
historical data, which we denote as ̂𝜷0. Therefore, the mean for the straPP is equal to (𝜎1∕𝜎0) ̂𝜷0. Of equal importance, the
variance of the straPP is equal to the variance of the power prior apart from the former being a function of 𝜎2

1 and the latter
𝜎

2
0 . Thus, the information contained in the straPP is essentially recalibrated to be a function of the variance associated

with the current data model instead of the historical data model.

4.5.1 Properties of the straPP for the linear model

For the normal-normal case when the assumption of the straPP transformation holds, the posterior mean based on an
analysis with the straPP can be shown to be unbiased as a point estimator in the frequentist sense (see Appendix F of the
Supporting Information). It follows that the posterior mean based on an analysis with the (unscaled) power prior is biased.
However, the rescaling property of the straPP can result in a prior with less precise information about the parameter (eg,
when 𝜎1 > 𝜎0) and thus the variance of the posterior mean from an analysis with the straPP can exceed that of the power
prior. This implies a trade-off between the bias and variance of the posterior mean point estimators, which becomes
apparent when comparing their mean-squared error (MSE). Theorem 1 gives conditions under which the posterior mean
based on the straPP has a smaller MSE than the posterior mean based on the power prior.

Theorem 1. Let 𝛽1j denote the (j + 1)th element of 𝜷1 (j = 0, … , p − 1). Further let 𝛽s,1j and 𝛽p,1j denote the posterior mean
point estimators for the straPP and power prior, respectively. For the normal-normal case, when 𝜷0 = g(𝜷1) (ie, the relation-
ship of the straPP transformation holds), the straPP estimator 𝛽s,1j has a lower MSE than the power prior estimator 𝛽p,1j
under the following condition:

Var(𝛽s,1j) − Var(𝛽p,1j)
[
Percent bias(𝛽p,1j)

]2 ≤ 𝛽
2
1j. (17)

In general, the percent bias of 𝛽p,1j depends on 𝛽1j. The proof of Theorem 1 can be found in Appendix F of the
Supporting Information.
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ALT et al. 9

5 SIMULATION STUDIES

In this section, we present and discuss results from a collection of simulation studies designed to evaluate the perfor-
mance of the straPP compared to the normalized straPP and Gen-straPP, as well as to the power prior, normalized power
prior, commensurate prior, and use of a reference noninformative improper prior. The purpose of these simulations is to
illustrate that the straPP and its variations have improved performance compared to other priors. Our comparison against
the power prior, normalized power prior, and commensurate prior is to demonstrate empirically that these priors are
not appropriate unless the data types (ie, models) for the current and historical data are the same. Though this point is
perhaps obvious to the reader, it is nonetheless helpful to see how poorly such priors perform in terms of bias-variance
tradeoff.

In Section 5.1, we present simulation studies for the normal-normal case described in Section 4.5, where both the
historical and current data models are linear regression models with known variances. In Section 5.2, we present simu-
lation studies for a case where the historical data follow a logistic regression model and the current data follow a linear
regression model with known variance, which we denote the binary-normal case. We generated 5000 historical and cur-
rent datasets for each unique parameter combination. For each simulated dataset for Section 5.2, we used Hamiltonian
Monte Carlo methods in rstan25 to obtain 25 000 posterior samples after 5000 burn in.

5.1 Simulation studies for the normal-normal case

For the normal-normal case, we performed simulation studies using parameter values that obey the assumption of the
straPP transformation (eg, 𝜷0 = g(𝜷1)). We then simulated the historical data and current data based on the corresponding
linear regression models. Thus, for this simulation, we are effectively evaluating the performance of the straPP compared
to the alternative priors for the case where the straPP transformation assumption holds.

For the normal-normal case, the percent bias of the posterior mean estimator for the treatment effect based on the
power prior (ie, 𝛽p,11) does not depend on the true treatment effect (ie, 𝛽11). As a result, one can calculate the exact
threshold, denoted as 𝛽∗11, where the MSE for the posterior mean estimators based on the straPP and power prior are
equal, as

𝛽
∗
11 = ±

√

Var(𝛽s,11) − Var(𝛽p,11)

Percent Bias(𝛽p,11)
= ±

2(n1𝜎
2
0 + a0n0𝜎

2
1 )

a0n0(𝜎0 − 𝜎1)

√
n1 + a2

0n0

(n1 + a0n0)2
− 𝜎2

0

n1𝜎
2
0 + a2

0n0𝜎
2
1

(n1𝜎
2
0 + a0n0𝜎

2
1 )2
.

We performed two sets of simulation studies for the normal-normal case. In both sets of simulations, the following
were considered: n0 = 50, n1 = 100, a0 = 0.5, 𝛽10 = 1, and 𝛽11 ∈ {0.00, 0.09, … , 1.71, 1.80}. For the first set of simulation
studies, we considered a case where the historical data variance exceeded that of the current data (ie, 𝜎0 = 3 > 𝜎1 = 1).
For the second set of simulation studies, we reversed the relationship between the variances. The values of the historical
data model parameters were then identified by solving 𝜷0 = (𝜎0∕𝜎1)𝜷1.

Figure 1A-D presents the results of the first set of the simulation studies, and Figure 1E-H presents the results from the
second set. For the first set of simulation studies, since the rescaling action of the straPP leads to more precise information
about the parameter in the current data model, the theoretical threshold for MSE equivalence between the power prior
and straPP is never crossed and it can be seen that the straPP has uniformly better performance than the power prior
and the uniform improper prior. For the second set, where the variance of the historical data is less than that of the
current data, the rescaling action of the straPP results in a prior that provides more accurate inference (eg, less bias in the
posterior mean) but also less precision on average (ie, larger variability in the posterior mean). For this case, there is a
tradeoff in terms of MSE with the straPP having superior MSE only for values of 𝛽11 that exceed 𝛽∗11 = 0.9364. Nonetheless,
the straPP still provides more accurate information even if the MSE of the posterior mean is not always superior to that
of the power prior. Furthermore, the coverage probability of the straPP remains approximately 0.95, while that of the
power prior decreases greatly as the true value of 𝛽11 increases. Additional simulation studies were performed using other
inputs. Importantly, the results presented here are indicative of the general behavior of the straPP with the only material
difference between simulations being that the threshold for MSE equality between the straPP and the power prior varies
depending on the particular inputs used for simulation.
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10 ALT et al.

F I G U R E 1 (A-D) The average log variance, bias, log MSE, and coverage probability for the posterior mean of 𝛽11, respectively, as a
function of the true value of 𝛽11 plotted on the x-axis for the case where 𝜎0 = 3, 𝜎1 = 1 for the scale transformed power prior, power prior, and
uniform improper prior. (E-H) The same information for the case where 𝜎0 = 1, 𝜎1 = 3. PP, power prior; straPP, scale transformed power
prior; UIP, uniform improper prior

5.2 Binary-normal case simulation

For the binary-normal case, we consider the case where the parameters in the historical and current data models satisfy
the assumption of the straPP transformation. The primary purpose of this simulation is to compare the straPP to the
normalized (asymptotic) straPP. Additionally, the power prior, normalized power prior, and a noninformative reference
prior were included for further comparison.

Unlike the normal-normal case, the form of I−1∕2
1 I1∕2

0 (𝜷0) does not simplify and thus no elegant relationship between
the parameters can be seen. We considered the following inputs: n0 = 100, n1 = 100, a0 = 0.5, 𝛽00 = −0.5, 𝜎1 = 2, and
𝛽01 ∈ {0.0, 0.1,…, 1.9, 2.0}. The values of the current data model parameters were then identified by solving 𝜷1 = g−1(𝜷0).
Note that the value of the parameters for the historical data model were chosen so that 0.38 ≤ p0, p1 ≤ 0.82 and are thus
consistent with our recommendations in Appendix B of the Supporting Information for when a straPP may be appropriate.
This constraint was implemented for the added purpose of ensuring the simulated datasets from the logistic model had
sufficient variability in the outcome across treatment groups to avoid instability issues in model fitting. More complete
details on prior specifications can be found in Appendix H of the Supporting Information.

Figure 2A-D presents results comparing performance characteristics of the straPP, normalized straPP, power prior,
normalized power prior, and reference prior. Focusing first on MSE, one can see that the MSE (Figure 2C) for the
straPP and normalized straPP is smaller than for the other priors over the full range of 𝛽11. This is largely attributable
to the reduction in the sampling variability of the posterior mean estimator (Figure 2A). The normalized straPP admits
the least biased point estimator among the set of priors that borrow information from the historical data. The straPP
appears to have non-negligible bias for all values of 𝛽11, but less bias than the power prior and normalized power prior
when 𝛽11 > 1.25. It is important to note that there is no theoretical guarantee that the posterior mean estimator will
be unbiased (as there was in the normal-normal case). The fact that bias increases with 𝛽11 is related to the straPP
transformation being less appropriate for extreme success probabilities as described in Appendix B of the Supporting
Information.
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ALT et al. 11

F I G U R E 2 (A-D) The average log variance, bias, log MSE, and coverage probability for the posterior mean of 𝛽11, respectively, as a
function of the true value of 𝛽11 plotted on the x-axis for the straPP, normalized straPP, power prior, normalized power prior, and reference
prior. NPP, normalized power prior; NstraPP, normalized straPP; PP, power prior; RP, reference prior; straPP, scale transformed power prior

6 ANALYSIS OF THE COMPASS STUDY DATA

For analysis of the COMPASS data, we use incidence of falls as the Phase 1 outcome data (ie, historical data) and the
continuous PROMIS outcome as the Phase 2 outcome data (ie, current data). The analysis assumes that the historical
patient outcomes are independently distributed according to a logistic regression model and the current patient outcomes
are independently distributed according to a linear regression model. As with any real data analysis, the true value of
the variance parameter for the linear regression model is not known and thus we appropriately treat that parameter as
random. The focus of this analysis is restricted to borrowing information on covariate effects as there is no rationale for
borrowing information on the intercept parameters. Thus, information borrowing priors are based on partial-borrowing.
For the purposes of comparison, we analyzed the COMPASS data using the straPP, Gen-straPP, power prior, commen-
surate prior, and a noninformative reference prior. As in the simulations, we consider use the partial-borrowing power
prior and the partial-borrowing commensurate prior to highlight that these priors are not appropriate in this context. The
initial priors for the power and commensurate priors were taken as in Section 5.2. All analyses were performed using
Hamiltonian Monte Carlo with rstan.25 For each prior, a total of 25 000 MCMC posterior samples were obtained after
a burn in of 5000 samples. To compare the overall quality of models fit based on the set of selected priors, we used the
deviance information criterion26 (DIC), where DIC(a0) = 2E{Dev(𝝃1)|D1,D0, a0} − Dev(𝝃1), where 𝝃1 = E{𝝃1|D1,D0, a0}
and Dev(𝝃1) = −2

∑n
i=1 log f (y1i|x1i, 𝝃1). Lower values of DIC indicate better fit.

For this illustration, we focus on the covariate effect associated with receipt of the COMPASS eCare plan, a key compo-
nent of the intervention. The regression model included an indicator for receipt of the COMPASS eCare plan, an indicator
for having a history of stroke or TIA, NIHSS score, and an indicator for having non-White race. After removing observa-
tions with missing values for the covariates of interest, the historical data sample size was 244 and the current data sample
size was 385.

Table 1 presents the DIC value for different choices of a0 for the straPP, Gen-straPP, and power prior. For each prior,
the DIC value roughly increases in a0 though the magnitude of increase is most substantial for the power prior. For the

T A B L E 1 DIC for the Gen-straPP, straPP, and PP with various values of a0

a0

Model 0.10 0.25 0.50 0.75 1.00

Gen-straPP 2815.38 2815.65 2816.38 2816.82 2816.93

straPP 2815.38 2815.37 2817.25 2819.23 2821.30

PP 2816.44 2819.01 2822.20 2823.83 2824.92

Abbreviations: Gen-straPP, generalized scale transformed power prior; PP, power prior; straPP, scale transformed power prior.
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values of a0 considered by the authors, a0 = 0.1 was the optimal choice for the Gen-straPP and power prior and a0 = 0.25
for the straPP. Though beyond the scope of this article, in sample size determination contexts, the value of a0 may also
be chosen a priori to ensure high Bayesian power and a well-controlled Bayesian type I error rate.27 Here, we simply take
the optimal value from Table 1 to use for analysis of the COMPASS data.

Table 2 presents the DIC, posterior estimates, ratio of posterior variances (used as a measure of relative effective
sample size), and 95% highest posterior density (HPD) intervals based on an analysis with each of the selected priors.
We define the ratio of posterior variances as the posterior variance of the covariate effect for a given prior, divided by
the corresponding posterior variance from an analysis based on the straPP. Posterior summaries for the intercepts and
variance parameter for the linear regression model can be found in Appendix I of the Supporting Information.

In Table 2, analysis with the Gen-straPP and straPP resulted in the smallest DIC when compared to analyses with other
priors. This suggests that the rescaling action of the straPP family is useful for translating the information on covariate
effects from the incidence of falls outcome to the continuous PROMIS outcome. Aside from the general performance of
the priors as measured by DIC, we also investigated the posterior estimates for the eCare Plan effect of interest. Compared
to the straPP, power and commensurate priors, the posterior mean effect based on the Gen-straPP is much closer to the
value based on the reference prior. While the posterior variance is reduced for analysis based on the straPP family of priors
compared to the reference prior, the degree of variance reduction is substantially less than that based on the power and
commensurate priors. These properties coupled with the higher DIC for the power and commensurate priors illustrate
why the Gen-straPP may be more appropriate for this context than the other priors.

7 DISCUSSION

In this article, we developed the straPP to provide a mechanism for informative prior elicitation using historical data when
the historical and current data types are different. The straPP is developed based on an assumption that parameter values
between the models for the historical and current data are equivalent after appropriate rescaling. The Gen-straPP was
developed to provide robustness to violations of the underlying assumption of the straPP. Additional research is needed to
evaluate the extent to which the Gen-straPP can provide sufficient robustness across different GLMs (eg, Poisson, negative
binomial, and gamma GLMs). Though we have developed the straPP and Gen-straPP as transformations of a power prior,
the transformation could be applied to any prior (eg, a robust mixture prior).

As is discussed in Appendix B of the Supporting Information, use of the straPP can only be advised when the historical
data model regression parameters are consistent with the subspace of the overall parameter space where the straPP trans-
formation is one-to-one. For example, applying the straPP to binary historical data with extreme success probabilities is
not advised in general. Additional research will be needed to facilitate use of the straPP family of priors more broadly in
these extreme contexts.

The straPP family of priors was developed specifically for univariate GLMs. In future work, the authors plan to
extend development to allow for historical and/or current data models with time-to-event outcomes (eg, proportional
hazards models). Developing the straPP for time-to-event data poses several new challenges not addressed in this arti-
cle, including dealing with right-censoring and modeling higher dimensional nuisance parameters (eg, baseline hazard).
Additionally, the authors plan to develop Bayesian sample size determination methodology for use with the straPP and
its generalizations in the design of clinical trials.
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