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Abstract

In this paper, we propose a Bayesian design framework for a biosimilars clinical

program that entails conducting concurrent trials in multiple therapeutic

indications to establish equivalent efficacy for a proposed biologic compared to

a reference biologic in each indication to support approval of the proposed

biologic as a biosimilar. Our method facilitates information borrowing across

indications through the use of a multivariate normal correlated parameter prior

(CPP), which is constructed from easily interpretable hyperparameters that

represent direct statements about the equivalence hypotheses to be tested. The

CPP accommodates different endpoints and data types across indications (eg,

binary and continuous) and can, therefore, be used in a wide context of models

without having to modify the data (eg, rescaling) to provide reasonable

information‐borrowing properties. We illustrate how one can evaluate the

design using Bayesian versions of the type I error rate and power with the

objective of determining the sample size required for each indication such that

the design has high power to demonstrate equivalent efficacy in each indication,

reasonably high power to demonstrate equivalent efficacy simultaneously in all

indications (ie, globally), and reasonable type I error control from a Bayesian

perspective. We illustrate the method with several examples, including

designing biosimilars trials for follicular lymphoma and rheumatoid arthritis

using binary and continuous endpoints, respectively.
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1 | INTRODUCTION

A biosimilar is a biological product that is highly similar
to and has no clinically meaningful differences with an
approved reference biologic (U.S. Food and Drug
Administration, 2015). There are four major compo-
nents of biosimilarity that are evaluated in a stepwise
manner to establish the totality of evidence required for
FDA approval of a biosimilar: analytical characteriza-
tion (eg, molecular structure and function), nonclinical

assessments (eg, animal toxicity), clinical pharmacol-
ogy, and clinical safety and efficacy. The clinical
program for a biosimilar is conducted to demonstrate
equivalent pharmacokinetics and efficacy, similar
safety, and similar immunogenicity between the pro-
posed and reference biologics with a goal of ultimately
demonstrating that there are no clinically meaningful
differences between the two products (U.S. Food and
Drug Administration, 2015). One or more trials may be
required to eliminate residual uncertainty regarding the
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similarity of clinical efficacy and safety between the
proposed and reference biologic, and these trials are
typically designed to provide statistical evidence that
the proposed biologic is neither inferior nor superior (in
most cases) to the reference biologic based on pre-
specified equivalence margins.

Due to clinically relevant differences in the mechan-
ism of action for a proposed biologic in different disease
conditions (hereafter referred to as indications), a
biosimilar program may include clinical trials for
different indications with the goal of generating the
comparative efficacy and safety data needed to support
approval as a biosimilar for the indications studied and
potentially other indications held by the reference
biologic. By way of example, the biologic rituximab
(brand name MabThera/Rituxan) has indications for
treatment of non‐Hodgkin’s lymphoma (NHL), chronic
lymphocytic leukemia, rheumatoid arthritis (RA), gran-
ulomatosis with polyangiitis, and microscopic polyangii-
tis. One biosimilar program (Deeks, 2017) included
separate clinical trials in RA (Yoo et al., 2017) and
follicular lymphoma (FL, a type of NHL) (Kim et al.,
2017) in addition to analytical characterization and
nonclinical assessments of the proposed biologic. On
the basis of these collective data, the product was
approved as a biosimilar by the European Medicines
Agency (EMA) in 2017 for use in all indications held by
rituximab.

In this paper, we develop a Bayesian clinical trial
design methodology for the design of a biosimilars
program that concurrently investigates several treatment
indications with a goal of establishing equivalent clinical
efficacy between a proposed and reference biologic in
each of them. Our approach incorporates informative
priors for each indication and allows for information
borrowing on treatment efficacy equivalence across
indications, resulting in a biosimilars program that is
more efficient (ie, requires fewer subjects) than conduct-
ing independent trials in each indication. The use of
informative priors may be justified, given the evidence of
biosimilarity collected earlier in the development pro-
gram (eg, analytical characterization and nonclinical
studies).

Borrowing information on treatment effectiveness
across different indications presents unique challenges.
In particular, qualitatively different endpoints may be
used for different indications. For example, both binary
and continuous endpoints have been used in RA
biosimilars trials (Yoo et al., 2017) whereas FL trials
have used a binary objective response endpoint (Coiffier
et al., 2016; Kim et al., 2017), which is common in
oncology trials. For our approach, information borrowing
is achieved using an informative multivariate normal

prior, which we refer to as a correlated parameter prior
(CPP), that induces prior correlation between the
treatment effects for the different indications. The CPP
is constructed from two elicited probabilities that are
readily interpretable in the context of biosimilars devel-
opment: (a) the marginal probability of treatment efficacy
equivalence for an indication; and (b) the updated
(conditional) probability of treatment efficacy equiva-
lence for an indication given equivalence in another. The
overarching goal of our design approach is to identify the
minimum sample size required for each indication to be
studied such that the analysis has high Bayesian (or
average) power to demonstrate equivalent efficacy in
each indication, reasonably high power to demonstrate
equivalent efficacy simultaneously for all indications (ie,
globally), and reasonable Bayesian type I error control.
Use of these Bayesian operating characteristics for
evaluating clinical trial designs has been recently studied
by Psioda and Ibrahim (2018; 2019), Chen et al. (2014),
Ibrahim et al. (2012), and Chen et al. (2011). Evaluating
type I error rates in settings where multiple indications
are investigated to help establish a global claim (ie, that
the proposed biologic has equivalent efficacy compared to
the reference product) is challenging because of the
possibility that treatment equivalence may hold for only a
subset of the indications studied. Generalizing the
strategy proposed by Psioda and Ibrahim (2019) for
evaluating Bayesian type I error rates for a single
hypothesis in the presence of pertinent prior information,
we develop a procedure for evaluating the Bayesian type I
error rate for a composite global hypothesis derived from
indication‐specific hypotheses when some or all of them
may be null.

Bayesian design strategies using the Bayesian hier-
archical model (BHM) have been proposed to borrow
information across indications in concurrent biosimilars
trials by Berry et al. (2011) though the authors did not
consider an application with endpoints based on
different data types. Trial design methods incorporating
information borrowing based on the BHM are increas-
ingly common, especially in the area of oncology (Thall
et al., 2003; Barry et al., 2015; Liu et al., 2017; Chu and
Yuan, 2018). Haitao et al. (2017) propose an informa-
tion‐borrowing design for biosimilars trials, but the
problem considered relates to borrowing information
from historical data in the context of a single trial,
which is quite different from our focus. There is a
dearth of statistical methods that directly address
information borrowing when the groups across which
information is borrowed have outcomes of different
types (eg, binary and continuous).

The rest of the paper is organized as follows. In
Section 2, we give a brief overview of the design
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problem and describe the example applications con-
sidered here and in the Supplementary Materials. In
Section 3, we introduce a mathematical notation for the
generalized linear model (GLM). In Section 4, we
develop the indication‐specific and global equivalence
hypotheses defined with respect to the canonical
parameter in a GLM as well as for a difference in
means or proportions. In Section 5, we define the CPP
and discuss prior elicitation. In Section 6, we describe
the simulation‐based design framework used to perform
sample size determination and to evaluate the operating
characteristics of a design based on a CPP chosen for
analysis. In Section 7, we present a design application
using the CPP that involves designing biosimilars trials
investigating treatment efficacy equivalence for RA and
FL indications where the endpoints are continuous and
binary, respectively. We close with some discussion in
Section 8.

2 | PRELIMINARIES

The general framework we develop in this paper can be
cast a sample size determination method where the
goal is to determine the minimum sample size required
in each indication, subject to Bayesian type I error
and power constraints, as well as other user‐specified
sample size considerations. Although the methodology
is developed to be quite general, we ground the
discussion with concrete illustrations based on a
biosimilars program with J = 2 indications. Many of
the concepts that may be unfamiliar to the reader (eg,
sampling priors discussed in Section 6.3) can be
visualized effectively in the case where J = 2, which
may help with understanding the methodology. More-
over, it is likely that J will be small for most biosimilars
programs (eg, J = 2 or J = 3); so this choice is also
practical.

For our primary example, we consider proportional
sample size reduction across the two indications studied,
meaning that the ratio of the actual sample size for a trial
in a given indication based on the proposed method to
the sample size required for an independent trial (having
the same power and without use of prior information) is
equal for all indications studied. We supplement that
example with additional examples and discussion in the
Supplementary Materials. In Appendix A of the Supple-
mentary Materials, we consider an application with
sample size reduction occurring in one indication only
to mirror a situation where one indication is substantially
more difficult to enroll than the other. In Appendix B of
the Supplementary Materials, we consider an application
with J = 3 indications.

3 | GENERALIZED LINEAR
MODELS

In this section, we describe the general sampling
distribution for the data. Let j J= 1, …, index indication
and i n= 1, …, j index subject within an indication.
Denote the outcome for subject i in indication j by yij.
We assume yij has a probability distribution in the
exponential family given as follows:

{ }p y θ τ a τ y θ b θ c y τ( | , ) = exp ( )( − ( )) + ( , ) ,ij ij j ij j ij ij ij ij j
−1 ⋅

indexed by the natural parameter θij and the indication‐
specific scale parameter τj. The functions b ( )⋅ and c ( )⋅
determine a particular family in the class, such as the
binomial, normal, Poisson, and so forth. The functions
a τ( )ij j are commonly of the form a τ τ w( ) =ij j j ij

−1 −1, where
the wij’s are known weights. We assume that w = 1ij
throughout.

Now suppose θij satisfies θ θ η= ( )ij j ij with η α= +ij j

βz γ x+ij j ij
T

j, where αj is an intercept parameter for
indication j, γj is the treatment effect parameter for
indication j, zij is the corresponding indicator of
treatment for subject i in indication j, xij is a p × 1j
vector of baseline covariates for subject i in indication j,
β β β= ( , …, )j j j p,1 , j

is the corresponding p × 1j vector of

parameters, and θ ( )j ⋅ is a monotone differentiable
function. We use the label D =j y z i nx{( , , ) : = 1, …, }ij ij ij j
to refer to the data for subjects from indication j andD to
refer to the data for all subjects. Models of the form
described above are known as GLMs. The function θ ( )j ⋅
links the linear predictor ηij to the natural parameter θij.
When θ η=ij ij, the link is said to be a canonical link.

4 | HYPOTHESIS TESTING

4.1 | Indication‐specific equivalence
hypotheses for GLMs

The primary inferential goal for each indication is to
prove treatment efficacy equivalence of the proposed
biologic compared to the reference biologic. In the case of
a GLM, the associated hypotheses can be formulated as

H γ δ H γ δ: | | vs : | | < ,j j j j j j0 1⩾ (1)

where δ 0j ⩾ is the largest absolute value of γj that is not
clinically meaningful (ie, the equivalence margin). Using
the canonical link functions, this is a test of the difference
in means for a linear model, the log ratio of means for a
Poisson regression model, and the log odds ratio for a
logistic regression model.

PSIODA ET AL. | 3
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4.2 | Hypotheses based on differences in
means or proportions

Biosimilars trials frequently test equivalence hypoth-
eses based on a difference in means even when the data
are not normally distributed (eg, using a difference in
proportions for binary data), typically based on a model
without covariates. Such a choice presents no challenge
to the proposed methodology. One only needs to
employ the identity link instead of the canonical link
for nonnormal data.

For example, in the case of binary data, the probability
of response π z( )j for subjects in treatment group z from
indication j is π z α γ z α γ z( ) = exp( + ) (1 + exp( + ))j j j j j∕
for the logit link (ie, the canonical link) and is
π z α γ z( ) = +j j j for the identity link. For the latter,
α (0, 1)j ∈ is the control group response probability and γj
is the difference in response probabilities between the
treated and control groups. To simplify model fitting, we
consider the alternative formulation

π z α γ z( ) = max(min( + , 1), 0),j j j (2)

which, for fixed αj and γj, is equivalent to π z α γ z( ) = +j j j .
In practice, inference can be performed using the posterior
distribution for π π(1) − (0)j j , which is essentially equiva-
lent to that for γj provided the sample size in each group is
not too small, actual response probabilities are not too
extreme, and reasonable priors are employed. Importantly,
using formulation (2) is advantageous from a computa-
tional perspective as it allows the prior distribution for γj to
have unbounded support, which helps in constructing a
correlated prior distribution for the γ γ{ , …, }J1 that directly
takes into account each indication’s equivalence margin on
the scale on which it is defined. The prior is developed in
detail in Section 5. In a slight abuse in notation, in what
follows we will write general probability statements based
on γj and the associated equivalence margin δj while
acknowledging that formal inference for binary endpoint
indications is based on the posterior distribution for
π π(1) − (0)j j .

4.3 | Indication‐specific evidence
evaluation

In the proposed testing framework, one rejects the null
hypothesis for indication j when P γ δ pD(| | < | )j j j0⩾
where p j0 is a prespecified posterior probability critical
value. Our use of D as opposed to Dj in the posterior
probability reflects the fact that analysis using the CPP
will generally induce information borrowing across
indications and, therefore, posterior inference for any
one indication will be influenced by the data from all

indications. The choice of p j0 should correspond to an
evidence threshold thought to be compelling to
stakeholders. A default choice is to take p = 0.95j0
which, under some assumptions (eg, a fixed sample
size, a noninformative prior, and a single analysis) will
result in a type I error rate of approximately 0.05 when
γ δ| | =j j. As our focus in this paper is not to define what
constitutes compelling evidence, we shall simply fix
p = 0.95j0 for our examples.

4.4 | Global equivalence hypotheses and
evidence evaluation

While it is important that each indication has high power
to prove treatment efficacy equivalence, it is also
important that the program as a whole is reasonably
powered to simultaneously demonstrate treatment effi-
cacy equivalence in all indications. A program that fails
to prove equivalence in every indication studied may not
eliminate all residual uncertainty about the biosimilarity
of the proposed biologic. We define the global (or
equivalently, program‐level) equivalence hypothesis with
this goal in mind. The global alternative hypothesis
asserts that the equivalence criteria hold for each of the J
indications to be studied. Let Θ be the parameter space
for γ γ γ= ( , …, )J1 and define the global alternative space
as γ γ δ j JΘ = { : | | < , = 1, …, }j j1 with complement
Θ0. The global equivalence hypotheses may then be
defined generally as γH : Θ0 0∈ vs γH : Θ1 1∈ with the
decision to reject the global null hypothesis occurring
when γP pD( Θ | )1 0∈ ⩾ , where p0 is a prespecified
posterior probability critical value which we assume to
be equal to 0.95 for our examples.

5 | THE CPP

The CPP is a multivariate normal prior for γ and can
be written as γ π π 0 Σ| , N( , )0 1 ∼ , with the positive
definite covariance matrix Σ determined indirectly by
elicited scalar hyperparameters π0 and π1. The hyper-
parameters π0 and π1 correspond, respectively, to the
(prior) marginal probability of treatment equivalence
for an indication and the conditional probability of
treatment equivalence for an indication given equiva-
lence in another. Formally, we define π P γ δ= (| | < )j j0
for all j and π P γ δ γ δ= (| | < || | < )j j k k1 for all j k≠ .
Given a choice for π0 and π1 and the specified
equivalence margins, it is a simple computational
problem to determine Σ. A computational approach
is described in Appendix C of the Supplementary
Materials.

4 | PSIODA ET AL.
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5.1 | On the elicitation of π0 and π1
The intent behind parameterizing the covariance matrix
Σ in terms of π0 and π1 is to provide interpretable
hyperparameters to support prior elicitation. Recall that a
key purpose of the clinical program in the multistage
biosimilars development process is to eliminate residual
uncertainty regarding the equivalence of treatment
efficacy between the proposed and reference product.
For our purposes, we define the residual uncertainty
regarding treatment efficacy equivalence as π1 − 0. An
agnostic viewpoint would correspond to π = 1/30 which
suggests that equivalence is no more likely than
inferiority (ie, γ δ−j j⩽ ) or superiority (ie, γ δj j⩾ ). A
more realistic but still relatively agnostic perspective
would correspond to equal prior probabilities on the
two hypotheses (ie, π = 0.50 ). If we define comp-
elling evidence of treatment efficacy equivalence in an
indication as P γ δ D(| | < | ) > 0.95j j , then choosing
π [0.5, 0.8]0 ∈ would be consistent with having pertinent
knowledge from earlier stages in the development
program and the presence of a nonnegligible degree of
residual uncertainty.

To elicit π1, one must ask the question, “If a trial were
conducted in one indication and equivalence proved,
how would that modify π0 for the indications yet to be
studied?” It may also be helpful to frame the question in
terms of the percent reduction in residual uncertainty
regarding treatment efficacy equivalence in one indica-
tion resulting from proving equivalence in another,

defined formally as ( )Δ = × 100π π
πRU

−
1−
1 0

0
. Having deter-

mined π0, eliciting ΔRU is equivalent to eliciting π1.
Biosimilars have been approved for indications not
directly studied in clinical efficacy trials by the EMA
(Deeks, 2017) suggesting that proof of treatment efficacy
equivalence in one indication may provide a substantial
reduction in uncertainty about equivalence in other
indications. Values of Δ [25, 50]RU ∈ may be appropriate
when, for the set of indications studied in a given clinical
program, there is a sound scientific justification for
information borrowing.

6 | SIMULATION ‐BASED DESIGN
FRAMEWORK

In this section, we develop a simulation‐based design
procedure that can be used for sample size determination
and evaluation of Bayesian operating characteristics
based on an elicited CPP to be used for analysis. We
extend the simulation‐based procedure for characterizing
Bayesian versions of the type I error rate and power
developed previously (Chen et al., 2011; Ibrahim et al.,

2012; Chen et al., 2014; Psioda and Ibrahim, 2018; 2019)
to the scenario where one is evaluating several related
hypotheses as well as a global composite hypothesis.

6.1 | Sampling priors and Bayesian
operating characteristics

To formally define the Bayesian type I error rate and
Bayesian power, we first introduce the concept of sampling
or design priors (O’Hagan and Stevens, 2001; Wang and
Gelfand, 2002). Let θ γ ψ= ( , ) be the collection of all
parameters for all indications where γ γ γ′ = [ , …, ]J1 is the
vector of treatment effect parameters, and ψ is the collection
of all nuisance parameters (ie, β βα α, …, , , …,J J1 1 , and
τ τ, …, J1 ). A sampling prior is simply a probability distribu-
tion for θ that reflects a (possibly assumed) state of
knowledge about θ.

When there are J indications to be studied simulta-
neously, one needs to evaluate the operating character-
istics of the design for each of the 2J possible scenarios
regarding treatment efficacy equivalence across the
respective indications. These scenarios are summarized
in Table 1 for the case where J = 2. The scenarios are
identified by a two‐letter designation such as AN where
(in this example) “A” indicates a true alternative for
indication 1 and “N” indicates a true null for indication 2.

In order to evaluate operating characteristics based on
each of the 2J scenarios, one must specify sampling prior
distributions for θ that are consistent with each of them.
For example, a valid sampling prior to distribution for the
AN scenario in Table 1 would give nonzero mass to
values of θ that satisfy both γ δ| | <1 1 and γ δ| |2 2⩾ .

6.2 | Defining the Bayesian type I error
rate and power

In this section, we formally define the Bayesian type I
error rate and power using the notation of (Psioda and
Ibrahim, 2019) extended for a biosimilars program with
multiple clinical efficacy trials, where it is of interest to
characterize the power to demonstrate indication‐specific
equivalence as well as global equivalence.

TABLE 1 Scenarios for equivalence

True indication hypothesis
Scenario
label j = 1 j = 2

True global
hypothesis

AA H11 H12 H1
AN H11 H02 H0

NA H01 H12 H0

NN H01 H02 H0

PSIODA ET AL. | 5
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For fixed θ, define the null hypothesis rejection rate
for indication j as

θ θr P γ δ pD( ) = E[1{ (| | < | ) }| ],j j j j0⩾ (3)

where P γ δ pD1{ (| | < | ) }j j j0⩾ is an indicator that one
rejects H j0 based on the posterior probability
P γ δ D(| | < | )j j and prespecified critical value p j0 . Note
that the expectation in (3) is with respect to the distribution
of the data D given θ. It should be understood that θr ( )j
implicitly depends on the chosen analysis prior which in our
case is the CPP described in Section 5. Further, define the
global null hypothesis rejection rate to be

θ γ θr P pD( ) = E[1{ ( Θ | ) } ].1 0∈ ⩾ ∣ (4)

Now consider one of the 2J scenarios for which power
and/or type I error control will be evaluated, and denote the
associated sampling prior generically as θπ ( )s( ) (here s( ) is
used to denote sampling prior). The Bayesian null hypoth-
esis rejection rate for indication j is formally defined as

θ θ θ θr r r π d= E [ ( )] = ( ) ( ) ,
θj

s
π j j

s( ) ( )s( ) ∫ (5)

and can be recognized as a weighted average null
hypothesis rejection rate with weights determined by
the user‐specified sampling prior θπ ( )s( ) . The Bayesian
global null hypothesis rejection rate θr r= E [ ( )]s

π
( ) s( ) has

an analogous interpretation as a weighted average rate.
Thus far, we have been careful to use the term null

hypothesis rejection rate. This is because whether rjs( ) can
be interpreted as a Bayesian type I error rate or Bayesian
power depends on the scenario in question (see Table 1).
For the AN scenario from Table 1, the value r s

1
( ) is the

indication‐specific Bayesian power for indication 1 and
r s
2
( ) is the indication‐specific Bayesian type I error rate for
indication 2. For the AN, NA, and NN scenarios, the
quantity r s( ) is the Bayesian type I error rate associated
with the global null hypothesis whereas for the AA
scenario it is the Bayesian power. An algorithm for
simulation‐based estimation of rjs( ) and r s( ) is given in
Appendix D of the Supplementary Materials.

6.3 | Construction of sampling priors

In this section, we discuss the construction of sampling
priors corresponding to the scenarios in Table 1. In settings
where information is being borrowed across indications, one
should consider several different sampling priors when
evaluating the performance of a design that uses the CPP (or
any informative analysis prior). The purpose of using
multiple sampling priors is to characterize type I error rates

and power for a coherent set of possibilities for the true
value of γ to support decision making regarding whether
the chosen analysis prior is adequate in the opinion of
regulatory and nonregulatory stakeholders.

We will consider two types of sampling priors: (a) point‐
mass sampling priors and (b) nondegenerate sampling
priors. Point‐mass sampling priors are trivial to construct
and the associated Bayesian type I error rate or power aligns
with classical frequentist versions. More generally, one can
construct nondegenerate sampling priors for one or more
components of γ by first defining a plausible distribution for
γ , denoted by γπ ( )D( ) , and then conditioning on an event
(eg, γ δ= −j j) to induce a plausible sampling prior for one of
the scenarios in Table 1 given the scenario is true. This type
of conditioning approach was considered by Psioda and
Ibrahim (2018; 2019) when constructing sampling priors for
a single set of hypotheses. Herein, we discuss an extension
for multiple related hypotheses.

To keep context clear, we will use subscripts such as
AA1, in the sampling prior labels (eg, γπ ( )AA

s
1,
( ) ) where the

first component in the subscript indicates whether the
sampling prior is a point‐mass prior (1 = point‐mass) and
the second component indicates the underlying scenario
(AA= true alternative for both indications). To fix ideas,
consider the design of a biosimilars program evaluating the
equivalence of a proposed and reference biologic for the
treatment of FL ( j = 1) and RA ( j = 2). We consider the
same example in the design application in Section 7. We
assume that the FL treatment evaluation will be based on a
difference in proportions endpoint using objective overall
response, an equivalence margin of δ = 0.101 , and that prior
data suggest the response probability for patients treated with
the reference biologic is 0.81. We assume the RA treatment
evaluation will be based on a mean change from baseline
endpoint (eg, a composite disease activity score using 28‐joint
counts and C‐reactive protein levels—DAS28‐CRP), an
equivalence margin of 0.6 units per European League
Against Rheumatism guidelines, and that prior data suggest
a mean change from baseline equal to −2.0 for the reference
biologic and a standard deviation for the change equal to 1.4.

For ease of exposition, we will assume point‐mass
sampling priors on the nuisance parameters and no
covariates. Specifically, we assume (based on the identity
link)

π α α τ α α
τ

( , , ) 1( = 0.81) × 1( = −2.0)
× 1( = 1. 4 ).

s( )
1 2 2 1 2

2
2

∝
(6)

These same point‐mass sampling priors for the nui-
sance parameters are used for the design application in
Section 7 and for the applications presented in the
Supplementary Materials.

6 | PSIODA ET AL.
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Panel A of Figure 1 presents a bivariate contour
plot for an example choice for γπ ( )D( ) based on a CPP
with a prior probability of treatment efficacy equivalence
equal to π = 0.750 and π = 0.8751 corresponding to a 50%
reduction in residual uncertainty of treatment efficacy
equivalence in one indication given equivalence in
the other (ie, Δ = 50RU ). These choices induce a CPP
covariance matrix with standard deviations equal to 0.087
and 0.522 for the FL and RA indications, respectively,
and correlation equal to 0.835. This choice for γπ ( )D( ) will
serve as the reference from which we will construct the
nondegenerate sampling priors specific to the scenarios
in Table 1 for use in design evaluations.

Panel B of Figure 1 presents the marginal prior
distribution π γ( )D( )

1 for the difference in proportions for
the FL indication. Panels C and D present, respectively, the
prior distributions for the FL difference in proportions
conditional on inferiority (panel C) and equivalence (panel
D) for the RA indication. Panels E and F, respectively,
present the prior distribution conditional on the RA mean
difference equaling its boundary null value for inferiority
(panel D) and equaling 0 (panel F). These plots help to
illustrate how information regarding the treatment effect in
one indication influences the distribution for the treatment
effect in the other.

6.3.1 | Sampling priors for the AA
scenarios

The most optimistic sampling prior for the AA scenario (ie,
the sampling prior that only allows for perfect equivalence)
is given by γπ γ γ( ) 1( = 0, = 0)AA

s
1,
( )

1 2∝ . This point‐mass
prior places all mass at the mode of the distribution in
panel A of Figure 1. When stakeholders of the proposed
biologic are highly confident in equivalence, using this AA
sampling prior as the sole basis for power analysis is
appropriate. However, this approach can be anti‐conserva-
tive for sample size determination and may leave the study
underpowered when the reference biologic is modestly
more or less effective than the proposed biologic.

A less optimistic AA sampling prior, denoted by
γπ ( )AA

s
2,
( ) , is obtained by conditioning γπ ( )D( ) on the event
γ c δ j{| | < : = 1, 2}j j⋅ for c (0, 1)∈ . Panel A of Figure 2

presents a contour plot for the truncated alternative
sampling prior π γ γ( , )AA

s
2,
( )

1 2 based on c = 0.5.
Panel B of Figure 2 presents a histogram for the

marginal distribution for the FL difference in proportions
for the truncated sampling prior. Though the primary
power analysis will often be based on the π AA

s
1,
( ) sampling

prior, we recommend, at minimum, performing a
supplemental power analysis using the π AA

s
2,
( ) sampling

prior with c 0.5≈ to assess the robustness of power for
the chosen sample sizes.

6.3.2 | Sampling priors for the AN and
NA scenarios

In this section, we focus discussion on the AN scenario
(the NA scenario is analogous). A reasonable worst‐case
point‐mass AN sampling prior (for evaluating type I
error rates) is given by γπ γ γ δ( ) 1( = 0, = − )AN

s
1,
( )

1 2 2∝ .
This sampling prior places all mass at the dark square
labeled “AN” in Panel A of Figure 1. Of course, an
even less favorable AN sampling prior is given by

γπ γ δ ϵ γ δ( ) 1( = (1 − ), = − )AN
s
1,
( )

1 1 2 2∝ . for small ϵ > 0.
However, such a sampling prior is likely not plausible
given the implied belief that the proposed biologic is nearly
superior in one indication and inferior in the other.

We would not generally advocate using the Bayesian
type I error rate based on the γπ ( )AN

s
1,
( ) sampling prior as the

sole determining factor regarding whether a chosen CPP
provides acceptable performance under that scenario. This
is because the γπ ( )AN

s
1,
( ) sampling prior will not generally

correspond to what are viewed to be the most likely
parameter values under that scenario. If we acknowledge

γπ ( )D( ) as a reasonable probabilistic relationship between
the treatment effects, a more plausible AN sampling prior,
denoted by γπ ( )AN

s
2,
( ) , is obtained by conditioning γπ ( )D( )

on the event γ δ γ δ{| | < , = − }1 1 2 2 . The induced marginal
sampling prior distribution for the FL difference in
proportions is presented in panel C of Figure 2. Under
the more plausible sampling prior distribution (ie,

γπ ( )AN
s
2,
( ) ), the type I error inflation associated with

information borrowing is much less substantial.

7 | APPLICATION: BIOSIMILARS
PROGRAM DESIGN WITH THE CPP

In this section, we compare designs based on analysis CPPs
using various choices for π0 and π1 as well as designs based
on the BHM to evaluate their performance with respect to
Bayesian power and type I error rates as defined in Section
6.2 based on the sampling priors discussed in Section 6.3. For
CPP designs, a uniform prior was used for the intercept in
the binomial model (identity link) and a uniform improper
prior was used for the normal model intercept and standard
deviation. Priors for the BHM are given in Section 7.3.

7.1 | Comparison of designs based on
the CPP

We focus on the design of two biosimilars trials evaluating
treatment efficacy equivalence for FL and RA indications
as described in Section 6.3. A traditional approach would
be to conduct independent trials in each of the two
indications to establish equivalence in both to support
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approval of the proposed biologic as a biosimilar for the
reference biologic in both indications and potentially
others. For the FL indication, an asymptotic sample size
calculation based on the score test identifies that 328
subjects per group are needed (total N = 7561 ) to have

power equal to 0.90 (α = .05) to demonstrate equivalent
efficacy between the proposed and reference biologics
when both groups have a response probability of .81 and
the equivalence margin for the difference in response
probabilities is .10. For the RA indication, an exact sample

(A) (B)

(C) (D)

(E) (F)

FIGURE 1 A, Bivariate prior γπ ( )D( ) for FL indication treatment effect γ1 (difference in proportions, x‐axis) and RA indication
treatment effect γ2 (difference in means, y‐axis). B, Marginal sampling prior for FL effect. C, Sampling prior for FL effect conditional on RA

inferiority (ie, γ (− , −0.6]2 ∈ ∞ ). D, Sampling prior for FL effect conditional on RA equivalence (ie, γ [−0.6, 0.6]2 ∈ ). E, Sampling prior for FL

effect conditional on RA inferiority boundary value (ie, γ = −0.62 ). F, Sampling prior to FL effect conditional on RA perfect equivalence (ie,

γ = 0.02 ). FL, follicular lymphoma; RA, rheumatoid arthritis
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size calculation identifies that 119 subjects per group are
needed (total N = 2382 ) to have power equal to 0.90
(α = .05) to demonstrate equivalent efficacy based on
mean DAS28‐CRP change from baseline when the
standard deviation for the change is 1.4 for both groups.
Thus, if two independent trials were conducted using these
sample sizes (when the assumptions are met), the power to
demonstrate global equivalence would be approximately
0.81 (ie, 0.9 = 0.812 ).

A key benefit of using an informative CPP is that
doing so permits sample size reduction relative to that
required for two independent equivalence trials without
sacrificing statistical power (provided one is willing
to relax traditional frequentist type I error control
requirements). We evaluate the performance of CPP‐
based designs based on two strategies for sample size
reduction. For the first approach (presented in this
section), we consider proportional sample size reduc-
tion for both the FL and RA indications relative to the
sample sizes that would be needed for two independent
trials (ie, N1 and N2 above). For the second approach, we
keep the total sample size for the RA group equal to
N = 2382 and consider a reduction in the number of FL
subjects required. The motivation and results for this
example are described in Appendix A of the Supple-
mentary Materials. In Appendix B of the Supplemen-
tary Materials, we consider an additional example with
J = 3 indications to demonstrate that the method can
be easily applied with more than two indications.

7.2 | Design with proportional sample
size modification in both indications

Table 2 presents estimated null hypothesis rejection rates
for the FL and RA indications as well as the global
null hypothesis rejection rate for the sampling priors

described in Section 6.3. These quantities are denoted as
r r,s s
FL
( )

RA
( ) , and r s( ), respectively.

Estimates for each combination of sampling prior
and CPP used for analysis are based on 20 000
simulated data sets. For each CPP, the operating
characteristics presented are from the design having
the smallest sample size in each indication such that
the Bayesian power to demonstrate equivalent efficacy
using the π AA

s
1,
( ) sampling prior is ⩾0.90 for each

indication and ⩾0.80 globally with a Bayesian type I
error rate of no greater than 0.10 based on the π AN

s
2,
( ) and

π NA
s
2,
( ) sampling priors. The sample sizes considered

ranged from 30% to 100% of the standard sample sizes
identified above for the FL and RA indications, using
5% increments.

The CPP prior defined by π π= = 0.330 1 is noninfor-
mative and results in no information borrowing. The
prior affords no sample size reduction due to the power
requirements imposed on the design but provides
excellent type I error control for indication‐specific and
global null hypotheses regardless of whether the more
liberal null sampling priors (eg, π AN

s
2,
( ) ) or conservative

null sampling priors (eg, π AN
s
1,
( ) ) are used to define the

Bayesian type I error rate. Hence, the prior is a useful
reference for evaluating the efficiency gains (eg, in-
creased power) and tradeoffs (eg, elevated type I error
rates) associated with the use of more informative CPPs.

Under the imposed type I error and power constraints
(based on the π AA

s
1,
( ) sampling prior), trials may be

performed using up to a 40% reduced sample size when
the CPP based on π = 0.750 and Δ = 50RU (π = 0.8751 ) is
used for analysis. However, for the less optimistic π AA

s
2,
( )

sampling prior (and for the same analysis prior), the
power to demonstrate global equivalence drops to 0.68
with indication‐specific hypotheses having power slightly
more than 0.8. Nonetheless, for any CPP the power to

(B) (C)(A)

FIGURE 2 A, Truncated bivariate alternative sampling prior π γ γ( , )AA
s
2,
( )

1 2 based on c = 0.5. B, Marginal alternative sampling prior for FL
effect based on c = 0.5. C, Marginal alternative sampling prior for FL effect conditional on RA inferiority boundary value (ie, γ = −0.62 ). FL,

follicular lymphoma; RA, rheumatoid arthritis
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demonstrate global equivalence is 0.58⩾ , which may be
acceptable to stakeholders given the relative conserva-
tiveness of that sampling prior.

For the AN and NA scenarios, the proposed biologic
does not meet the criteria of having equivalent efficacy for
both indications and so the global null hypothesis rejection
rate r s( ) should be viewed as a type I error rate. The point‐
mass sampling priors for the AN and NA scenarios (ie,
π AN

s
1,
( ) or π NA

s
1,
( ) ) help to characterize a worst‐case global

Bayesian type I error rate for this set of hypotheses. When
there is no information borrowing (π π=0 1), the Bayesian
type I error rate for the global equivalence hypothesis is
estimated to be no greater than 0.08 even when π = 0.750 .
Bayesian type I error rates for indication‐specific hypoth-
eses reach as high as 0.10 for the same analysis prior. In
contrast, for a CPP inducing substantial information

borrowing (ie, Δ = 50RU ) coupled with relatively informa-
tive priors marginally, the Bayesian type I error rate for the
global equivalence hypothesis is estimated to be as high as
0.21 (FL indication null) with indication‐specific type I
error rates as high as 0.25.

Fundamentally, the type I error rates above based on the
π AN

s
1,
( ) or π NA

s
1,
( ) sampling priors should not be viewed as the

only pertinent type I error rates with which to evaluate a
design. Bayesian type I error rates based on the π AN

s
2,
( ) and

π NA
s
2,
( ) sampling priors (as defined in Section 6.3) are

designed to characterize type I error rates in more plausible
null scenarios that reflect the relatedness of the treatment
effects in the FL and RA indications. These priors take into
account the fact that, if the proposed biologic has a null (eg,
inferior) treatment effect in one indication, then its effect is
probably worse than the reference biologic in the other, even

TABLE 2 Design operating characteristics based on proportional sample size modification for each indication

Sampling prior

Δ = 0RU Δ = 25RU Δ = 50RU

π0 π1 %SS r sFL( ) r sRA( ) r s( ) π1 %SS r sFL( ) r sRA( ) r s( ) π1 %SS r sFL( ) r sRA( ) r s( )

π AA
s
1,
( ) 0.33 0.33 1.00 0.91 0.91 0.81 0.50 1.00 0.91 0.92 0.81 0.67 0.95 0.91 0.92 0.82

0.50 0.50 1.00 0.92 0.92 0.82 0.63 0.90 0.91 0.91 0.80 0.75 0.80 0.91 0.91 0.81

0.67 0.67 0.90 0.91 0.91 0.80 0.75 0.85 0.92 0.92 0.83 0.84 0.70 0.92 0.92 0.82

0.75 0.75 0.85 0.91 0.92 0.80 0.81 0.75 0.91 0.91 0.80 0.88 0.60 0.91 0.91 0.81

π AN
s
1,
( ) 0.33 0.33 1.00 0.91 0.06 0.04 0.50 1.00 0.91 0.06 0.04 0.67 0.95 0.91 0.07 0.05

0.50 0.50 1.00 0.92 0.06 0.05 0.63 0.90 0.90 0.08 0.06 0.75 0.80 0.87 0.11 0.09

0.67 0.67 0.90 0.91 0.08 0.06 0.75 0.85 0.91 0.10 0.08 0.84 0.70 0.84 0.18 0.14

0.75 0.75 0.85 0.91 0.09 0.07 0.81 0.75 0.89 0.12 0.10 0.88 0.60 0.80 0.24 0.20

π NA
s
1,
( ) 0.33 0.33 1.00 0.06 0.91 0.05 0.50 1.00 0.06 0.91 0.05 0.67 0.95 0.07 0.91 0.06

0.50 0.50 1.00 0.06 0.92 0.05 0.63 0.90 0.08 0.90 0.06 0.75 0.80 0.13 0.88 0.10

0.67 0.67 0.90 0.08 0.92 0.06 0.75 0.85 0.11 0.91 0.09 0.84 0.70 0.19 0.85 0.16

0.75 0.75 0.85 0.10 0.92 0.08 0.81 0.75 0.14 0.89 0.11 0.88 0.60 0.25 0.81 0.21

π NN
s
1,
( ) 0.33 0.33 1.00 0.06 0.06 0.00 0.50 1.00 0.06 0.05 0.00 0.67 0.95 0.05 0.05 0.00

0.50 0.50 1.00 0.06 0.06 0.00 0.63 0.90 0.05 0.05 0.00 0.75 0.80 0.05 0.05 0.00

0.67 0.67 0.90 0.08 0.08 0.00 0.75 0.85 0.06 0.06 0.01 0.84 0.70 0.05 0.05 0.01

0.75 0.75 0.85 0.10 0.09 0.01 0.81 0.75 0.07 0.06 0.00 0.88 0.60 0.06 0.07 0.01

π AA
s
2,
( ) 0.33 0.33 1.00 0.79 0.79 0.58 0.50 1.00 0.79 0.80 0.59 0.67 0.95 0.80 0.80 0.60

0.50 0.50 1.00 0.80 0.80 0.61 0.63 0.90 0.79 0.79 0.59 0.75 0.80 0.81 0.81 0.63

0.67 0.67 0.90 0.80 0.81 0.61 0.75 0.85 0.81 0.82 0.64 0.84 0.70 0.83 0.83 0.67

0.75 0.75 0.85 0.81 0.82 0.62 0.81 0.75 0.81 0.82 0.63 0.88 0.60 0.83 0.82 0.68

π AN
s
2,
( ) 0.33 0.33 1.00 0.42 0.06 0.02 0.50 1.00 0.42 0.06 0.02 0.67 0.95 0.39 0.06 0.02

0.50 0.50 1.00 0.44 0.06 0.02 0.63 0.90 0.39 0.06 0.02 0.75 0.80 0.35 0.07 0.03

0.67 0.67 0.90 0.45 0.08 0.02 0.75 0.85 0.40 0.08 0.03 0.84 0.70 0.34 0.10 0.05

0.75 0.75 0.85 0.47 0.09 0.03 0.81 0.75 0.39 0.09 0.04 0.88 0.60 0.33 0.12 0.07

π NA
s
2,
( ) 0.33 0.33 1.00 0.06 0.43 0.02 0.50 1.00 0.06 0.43 0.02 0.67 0.95 0.06 0.42 0.02

0.50 0.50 1.00 0.06 0.44 0.02 0.63 0.90 0.06 0.41 0.02 0.75 0.80 0.07 0.37 0.04

0.67 0.67 0.90 0.08 0.46 0.03 0.75 0.85 0.08 0.42 0.04 0.84 0.70 0.10 0.37 0.06

0.75 0.75 0.85 0.10 0.48 0.03 0.81 0.75 0.10 0.41 0.05 0.88 0.60 0.13 0.36 0.08

Abbreviations: %SS, fraction of standard sample size; AA, both alternative; AN, indication 2 null; NA, indication 1 null; NN, both null.
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if the equivalence criterion is met for the second indication.
This property is illustrated by the marginal alternative
sampling prior for the FL indication shown in panel C of
Figure 2. Not surprisingly, Bayesian type I error rates
defined based on the π AN

s
2,
( ) and π NA

s
2,
( ) sampling priors are

significantly lower and can be controlled at say, level 0.05
while still permitting meaningful sample size reductions of
25% to 30%.

The part of Table 2 corresponding to the π NN
s
1,
( )

sampling prior characterizes the Bayesian type I error
rates when the treatment effects for the proposed biologic
are uniformly inferior to those for the reference biologic.
One can see the global type I error rate is conservatively
controlled regardless of the informativeness of the CPP
chosen for analysis.

7.3 | Comparison of CPP to BHM

In this section, we compare CPP‐based design performance
to a design based on the BHM. For the BHM design, the
same constraints were applied with regards to power and
type I error control and the same range of possible sample
sizes were considered. For the BHM, we implemented
the naïve hierarchical prior γ γ μ SD σN( | , = )j j∼ for j =
1, 2, μ ∼ μ SDN( |0, = 100), and σ σGamma( |0.01,∼
scale=100). For the intercept parameters, we assumed
α α SDN( |0, = 100)j j∼ for j = 1, 2. The chosen BHM
prior results in a design with the operating characteristics as
shown in Table 3, which are presented alongside selected
CPP‐based design results associated with comparable sample
size reductions. Under the Bayesian type I error constraints,
the BHM prior permitted 25% sample size reduction, had

greater power than the CPP priors for the AA scenario, and
worse type I error control and indication‐specific power for
the AN and NA scenarios. All designs perform well for the
NN scenario.

Increasing power in the AA scenario necessarily
comes at the price of more inflation of type I error rates
in the AN and NA scenarios. However, the reduced
indication‐specific power for the BHM in the AN and NA
scenarios relative to the CPP is a manifestation of how
strongly the BHM encourages borrowing unless the
hyperpriors are carefully calibrated.

8 | DISCUSSION

In this paper, we develop a strategy for a biosimilars
clinical program that leverages an informative CPP to
increase the efficiency of the trials conducted (ie, lowers
their required sample sizes). The CPP is developed based
on an elicited prior probability of treatment efficacy
equivalence and a conditional probability of treatment
efficacy equivalence for the set of indications to be
investigated. As described in Appendix C of the
Supplementary Materials, this elicitation strategy gener-
ates a covariance matrix where each treatment effect’s
prior standard deviation is a common multiple of its
corresponding equivalence margin and results in a
common prior correlation between all treatment effects.
In the biosimilars setting, the hyperparameters in the
CPP having appealing interpretations. Several obvious
generalizations to the CPP are possible. If desired, one
could elicit a distinct prior probability of treatment

TABLE 3 Operating characteristics for select CPP and BHM designs

True hypothesis Method π0 π1 ΔRU %SS

SP= 1 SP= 2

r̂ sFL( ) r̂ sRA( ) r̂ s( ) r̂ sFL( ) r̂ sRA( ) r̂ s( )

AA CPP 0.67 0.84 50 0.70 0.92 0.92 0.82 0.83 0.83 0.67

CPP 0.75 0.81 25 0.75 0.91 0.91 0.80 0.81 0.82 0.63

BHM 0.75 0.95 0.93 0.88 0.86 0.83 0.74

AN CPP 0.67 0.84 50 0.70 0.84 0.18 0.14 0.34 0.10 0.05

CPP 0.75 0.81 25 0.75 0.89 0.12 0.10 0.39 0.09 0.04

BHM 0.75 0.72 0.18 0.16 0.27 0.11 0.08

NA CPP 0.67 0.84 50 0.70 0.19 0.85 0.16 0.10 0.37 0.06

CPP 0.75 0.81 25 0.75 0.14 0.89 0.11 0.10 0.41 0.05

BHM 0.75 0.20 0.73 0.18 0.11 0.31 0.09

NN CPP 0.67 0.84 50 0.70 0.05 0.05 0.01

CPP 0.75 0.81 25 0.75 0.07 0.06 0.00

BHM 0.75 0.04 0.05 0.02

Abbreviations: 1, point‐mass; 2, nondegenerate; %SS, fraction of standard sample size; AA, both alternative; AN, indication 2 null; BHM, Bayesian hierarchical
model; CPP, correlated parameter prior; NA, indication 1 null; NN, both null; SP, sampling prior.
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efficacy equivalence for each of the indications (ie,
π j J, = 1, …,j0 ). For this generalization of the CPP, there
is no simple analog to the conditional probability π1 and
so direct elicitation of the correlation parameter (or
matrix) for the J treatment effects would be required. An
alternative generalization of the CPP would be to model
the correlation parameter directly and give the parameter
a prior in an attempt to let the observed data determine
(or at least influence) how much information should be
borrowed. Such a generalization could be termed a
hierarchical CPP. However, we would advocate against
using such a prior. Our opinion is based in part on the
view that the hyperparameter π1 is highly interpretable
and therefore it may be reasonable to elicit by way of
opinion from nonstatistician stakeholders. Perhaps more
importantly, our numerical investigations suggest that,
regardless of whether J is small or large, a hierarchical
CPP will result in increased borrowing even for observed
data where one would desire the opposite behavior (eg,
when half the data suggest inferiority and the other half
suggest equivalence). We discuss this more in Appendix
E of the Supplementary Materials. In that appendix, we
illustrate that this challenge is equally applicable to the
CPP with a random correlation parameter and the BHM.

It is clear from Table 3 that the BHM tends to shrink
estimates toward one another more strongly than the
CPP for the chosen BHM hyperpriors. This phenomenon
explains the comparative behavior of the designs in the
AA and NN scenarios where both treatment effects are
equal, and the AN and NA scenarios where they are not.
For the design comparisons in Section 7.3, we chose a
single BHM to evaluate against the CPP. Different
hyperpriors would lead to different properties for a
BHM‐based design, some perhaps more desirable and
comparable to properties obtained using the CPP (eg,
using a BHM hyperprior for the standard deviation that
suggests comparatively larger values would result in less
borrowing leading to performance closer to that obtained
by the CPP). Given that hierarchical priors have difficulty
identifying how much information should be borrowed
(see Appendix E of the Supplementary Materials) and the
superior interpretability of the CPP hyperparameters
(due to being direct statements about the hypotheses
being tested), we argue for use of the CPP over the BHM
or other meta‐analytic priors.

If the scales of the treatment effects differ substantially
(eg, δ = 62 for the normal endpoint in our example
instead of δ = 0.62 ), the BHM’s performance will degrade
substantially unless some type of modification is applied
(eg, rescaling the data or modifying the hyperprior).
However, the CPP can be applied without any such
modification. The problem of borrowing information
when data are on different scales is more apparent in our

example application based on J = 3 indications presented
in Appendix B of the Supplementary Materials.

Characterizing type I error rates is particularly
challenging when one evaluates multiple related hypoth-
eses and wishes to make a global claim about treatment
equivalence (ie, that H1 is true). In situations where a
subset of indications are null (should they occur), even
when one takes the standard approach of assuming a
boundary null effect for the null indications (ie, γ δ= −j j),
the type I error rate will be a function of the treatment
effect in the other indications. Care must be taken when
evaluating the performance of any prior to determine
whether its use results in adequate type I error control in
this complex setting. Constructing a reasonable sampling
prior to distribution for nonnull treatment effects is
critical. Our procedure for generating a sampling prior
for the nonnull treatment effects provides a rational
framework for doing this. Although considering a worst‐
case sampling prior for type I error evaluation (eg, the
π AN

s
1,
( ) sampling prior) is helpful for developing a

comprehensive understanding of the benefits and risks
of information borrowing, to fully benefit from the
Bayesian approach, stakeholders must be willing to
accept type I error control based on more likely null
scenarios given prior knowledge about the similarity of
the proposed and reference products.
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Web Appendices referenced in Sections 2, 5, 6, 7, and 8
are available with this paper at the Biometrics website on
Wiley Online Library. A GitHub repository contains the
programs and other resources needed to reproduce the
analyses presented in this paper (https://github.com/
psioda/Bayes‐Biosimilars). The software provided was
written using R (R Core Team, 2016) version 3.3.1.
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