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SUMMARY

In this article, we develop a Bayesian adaptive design methodology for oncology basket trials with binary
endpoints using a Bayesian model averaging framework. Most existing methods seek to borrow infor-
mation based on the degree of homogeneity of estimated response rates across all baskets. In reality, an
investigational product may only demonstrate activity for a subset of baskets, and the degree of activity
may vary across the subset. A key benefit of our Bayesian model averaging approach is that it explic-
itly accounts for the possibility that any subset of baskets may have similar activity and that some may
not. Our proposed approach performs inference on the basket-specific response rates by averaging over
the complete model space for the response rates, which can include thousands of models. We present
results that demonstrate that this computationally feasible Bayesian approach performs favorably com-
pared to existing state-of-the-art approaches, even when held to stringent requirements regarding false
positive rates.
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1. INTRODUCTION

Oncology drug development has traditionally focused on the histology of cancer as this was the key
known determinant for whether a tumor would respond to a given treatment. With the advent of genomic
technologies that allow for the characterization of specific genomic alterations within the tumor (e.g.,
mutations), the focus has broadened to include developing targeted therapies for specific alterations (Redig
and Jänne, 2015). For an investigational drug which targets a specific genomic alteration (e.g., BRAF
V600E mutation), it may be expected that the drug will show activity for multiple tumor histologies as
long as the alteration is present. As such, standard enrichment designs (Simon and Maitournam, 2004;
Maitournam and Simon, 2005; Mandrekar and Sargent, 2011) which focus on a particular histology and
screen for the genomic alteration are not ideally suited for this scenario. Increasingly, so-called basket
trials are being considered for this purpose. Basket trials are usually nonrandomized, focus on multiple
cancer histologies, and include patients with a specified genomic alteration who then receive a regimen
to which their tumors are expected to be responsive based on prior information (Simon, 2017). Often
these trials use binary Response Evaluation Criteria in Solid Tumors (RECIST) endpoints, reflecting a
compromise between clinical relevance and the need to have timely information on treatment activity.

In the simplest case, a basket trial can be used to evaluate the activity of a single investigational drug
on multiple tumor histologies that possess a common genomic alteration (i.e., baskets). One of the key
goals of basket trials is to determine the subset of baskets for which the investigational product has activity
(i.e., patients treated with the product have a desirable probability of response). For example, Hyman and
others (2015) conducted a basket trial for Vemurafenib, a selective oral inhibitor of the BRAF V600 kinase
that included six pre-specified non-melanoma BRAF V600E mutation-positive cancers: nonâŁ“small-cell
lung cancer (NSCLC), ovarian cancer, colorectal cancer, cholangiocarcinoma, breast cancer, and multiple
myeloma. Vemurafenib had previously received Food and Drug Administration (FDA) approval for the
treatment of BRAF V600E mutation-positive metastatic melanoma and so melanomas were not included
in the trial. Based on a RECIST endpoint, the basket trial demonstrated that Vemurafenib was active in
NSCLC and several other histologies, but not in colorectal cancer.

In this article, we propose a flexible Bayesian adaptive basket trial design methodology that accom-
modates early stopping of individual baskets due to inactivity (futility) or activity (efficacy) using the
Bayesian model averaging (BMA) framework (Madigan and Raftery, 1994; Raftery, 1995; Draper, 1995).
For a thorough tutorial on BMA, see Hoeting and others (1999). Bayesian model averaging is naturally
suited for the design of basket trials wherein one expects many or all of the baskets to respond similarly to
treatment based on the common genomic alteration targeted by the investigational product. The key benefit
of the BMA approach over many existing methods is that it naturally allows for information borrowing
over any subset of baskets that have similar activity.

Basket trial design is an active topic for statistical methods research. Much of the innovative work to
date was recently summarized in a review article by Simon (2017). We briefly discuss the relevant literature
here. One of the most popular approaches for phase II oncology trials has been to use Simon’s Two-Stage
Design (Simon, 1989). When applied in the basket trial setting, one essentially performs separate two-
stage trials for each basket. This type of approach will be inefficient when the drug is inactive in all baskets
or has similar activity in a subset of baskets. Cunanan and others (2017) proposed a frequentist approach
that improves efficiency of parallel two-stage evaluation of each histology by assessing the homogeneity
of the response rates across baskets at an interim analysis using a calibrated Fisher’s exact test based on
the contingency table of response and non-response counts for the baskets. Their method allows for early
stopping for inactivity at the end of stage one. The second stage of the design either pools all the data or
analyzes the data for each basket separately with a Bonferroni-type multiplicity adjustment. Simon and
others (2016) proposed a Bayesian approach that performs inference for each basket by averaging results
from two competing models: (1) a model that assumes that all baskets have different response rates and
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(2) a model that assumes all baskets have the same response rate. Whereas the method by Simon and
others averages inference from models (1) and (2), the method by Cunanan and others uses interim data
to choose between them. In either case, the explicit focus on these two models is likely a concession made
to achieve a more feasible design method to implement in practice. A core tenet guiding the development
of the proposed method is that for most basket trials the underlying truth will fall somewhere between the
two extremes defined by (1) and (2) and therefore it is desirable to have a method that explicitly accounts
for the myriad of possibilities which may occur.

Several basket trial design methods have been proposed that make use of Bayesian hierarchical models
(BHM). For example, Thall and others (2003), Berry and others (2013), Liu and others (2017), and Chu
andYuan (2018) all propose design methods based on variations of the BHM. The approach taken by Thall
and others and Berry and others is a traditional Bayesian adaptive design with multiple analyses at which
it is possible to stop enrollment for individual baskets due to their having demonstrated activity or a high
likelihood of inactivity. Berry and others propose using a weakly informative hierarchical prior to let the
data determine the degree of borrowing as much as possible. Chu and Yuan (2018) instead proposed a
supervised or calibrated BHM (CBHM), where the variance parameter in the hyperprior is not specified
a priori as in a fully Bayesian approach but instead is constructed as a log-linear function of a Pearson
chi-square test statistic based on the observed data at the time of the analysis. Their approach allows for
early stoppage of enrollment in individual baskets for inactivity but not for demonstrated activity.

The rest of this article is organized as follows. In Section 2, we provide a motivating discussion for the
BMA approach. In Section 3, we develop the BMA design methodology in detail. In Section 4, we present
simulation studies that compare our BMA design approach with several recently proposed design methods
for basket trials, focusing primarily on two-stage designs. We close the article with some discussion in
Section 5.

2. MOTIVATION FOR THE BAYESIAN MODEL AVERAGING APPROACH

The primary purpose of the proposed trial design methodology is to allow practitioners to evaluate whether
an investigational treatment improves binary response rates in each of K distinct baskets using an inference
procedure that permits borrowing information across subsets of baskets to the extent that such borrowing
is reasonable based on the observed data. We assume throughout the article that all patients within a
basket are independent and that they share a common probability of response when administered the
investigational treatment. Thus, the data for each basket will result in a binomial likelihood indexed by a
basket-specific probability of response. Henceforth, we will use the term response rate as a synonym for
probability of response.

For illustration, consider the case where there are K = 3 baskets. In this setting, the simplest model
(i.e., the most parsimonious model) for the basket-specific response rates would constrain them all to be
equal. The least parsimonious model would allow them all to differ. Let π(j,p) be the pth distinct response
rate for the jth of J possible models for the basket-specific response rates. We denote the jth model by Mj.
The term distinct implies that π(j,h) �= π(j,l) for h �= l. Necessarily, the number of distinct response rates is
bounded above by K .

Each of the J models constrain different subsets of the basket-specific response rates to be equal (with
the exception of the least parsimonious model which imposes no constraints). Table 1 presents all possible
models for the response rates for the case where K = 3. If one were certain that baskets one and two had
equal response rates which differed from the response rate for basket three (i.e., model M2), the prudent
analysis would be to pool the data for the two baskets that share a common response rate. Of course, in
reality one cannot know definitively which of the five possible models corresponds to the true model, but
one can use the data to help decide which of the competing models are plausible and act accordingly.
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Table 1. Possible response rate models for K = 3 baskets

Basket Distinct
response rate response

k = 1 k = 2 k = 3 rates Model

π(1,1) π(1,1) π(1,1) 1 M1

π(2,1) π(2,1) π(2,2) 2 M2

π(3,1) π(3,2) π(3,1) 2 M3

π(4,1) π(4,2) π(4,2) 2 M4

π(5,1) π(5,2) π(5,3) 3 M5

As noted above, the methods proposed by Cunanan and others (2017) and Simon and others (2016)
do not take the intermediate models M2 − M4 explicitly into account. Our simulations illustrate that such
approaches yield relatively high false positive rates (FPRs) when these intermediate models best describe
the underlying generative processes for the data. Methods based on shrinkage using the BHM (Thall and
others, 2003; Berry and others, 2013) assume model M5 but borrow information based on the similarity
of observed basket-specific response rates across all baskets. When intermediate models such as M2 − M4

hold, this technique can lead to undesirable false positive and/or false negative rates due to the BHM
shrinking all estimates towards a common average. Adaptations such as the CBHM (Chu andYuan, 2018)
have recently been developed to correct this deficiency.

The approach that we develop in this article is guided by the perspective that it is unlikely that scientific
knowledge will exist such that many (or any) of the possible competing models can be justifiably discarded.
It would be ideal to let the observed data identify the set of plausible models from the complete model
space and then average inference results from the competing models in accordance with their posterior
probabilities given the data that have been observed.

3. METHODS

3.1. Overview of the Bayesian adaptive design

We assume that K baskets will be evaluated for activity in the trial and propose an adaptive design
framework that accommodates multiple analyses and allows for individual baskets to be permanently
closed for enrollment at any of them. Baskets may be closed to enrollment as a result of having demonstrated
activity or a sufficiently high likelihood of inactivity.

Let ni,k and yi,k denote the number of patients and number of responders, respectively, for basket k at
the time of analysis i and let Di = {

yi,k , ni,k : k = 1, ..., K
}

represent the complete dataset at that time.
Further, let π0 be a user-specified response rate associated with inactivity and πA be a hypothesized
plausible response rate associated with activity. For each basket open to enrollment at the time of analysis
i, one computes P

(
πk >

πA+π0
2 |Di

)
to determine a futility action and P (πk > π0|Di) to evaluate activity.

If P(πk > π0|Di) > φ1 for a pre-specified evidence threshold φ1, then the basket may be closed to
enrollment due to having demonstrated sufficient probability of activity so as to warrant further study
in a confirmatory setting. Conversely, if P

(
πk >

πA+π0
2 |Di

) ≤ φ0 for a pre-specified evidence threshold
φ0, then the basket may be closed to enrollment due to having a low likelihood of demonstrating the
hypothesized level of activity in the trial.

The trial may terminate for one of several reasons. First, the trial will terminate when the number
of baskets open to enrollment, denoted by R, reaches zero. Otherwise the trial will terminate when the
maximum number of analyses, denoted by I , has been reached. Between the (i − 1)th and ith interim
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Fig. 1. Overview of Basket Trial Study Design.

analysis, at least �i×R patients are enrolled to the baskets open for enrollment. For the sake of pragmatism,
we do not require that exactly �i patients enroll in each open basket between consecutive analyses. The
quantity �i simply serves as a target for enrollment in each basket that would be reached in an ideal
setting. We do require that at least �i,min ≤ �i patients enroll in each open basket but place no cap on the
maximum number of patients. Thus, the actual enrollment between the (i − 1)th and ith analysis will be
no less than �i × R. The proposed Bayesian adaptive design framework is illustrated in Figure 1. Note
that some trials may only evaluate activity (e.g., whether P (πk > π0|Di) > φ1) at the end of the trial
due to ethical concerns about closing a basket that has demonstrated activity (i.e., when no other proven
treatment exists) while other baskets are still open for enrollment.

3.2. Inference through model averaging

3.2.1. Likelihood formulation and the model space. For ease of exposition, in this section, we omit the
index i. We assume that the patients enrolled in basket k constitute a random sample with each having the
same probability πk of responding to treatment. Thus, yk ∼ Binomial (πk , nk) and the likelihood for the
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observed data can be written as follows:

L (
π

∣∣D) ∝
K∏

k=1

(
nk

yk

)
π

yk
k (1 − πk)

nk −yk ,

where π = (π1, . . . , πK) is the vector of response rates. Denote the number of distinct response rates for
model Mj by Pj. Further, let �j,p be the set of basket labels corresponding to baskets having the pth distinct
response rate for model Mj (p = 1, . . . , Pj). For example, from Table 1 when j = 2, �2,1 = {1, 2} and
�2,2 = {3}. Conditional on model Mj being the true model, the likelihood for the observed data can be
rewritten as follows:

L (
π (j)

∣∣D, Mj

) ∝
Pj∏

p=1

⎧⎨
⎩

∏
k∈�j,p

(
nk

yk

)
π

yk
(j,p)

(
1 − π(j,p)

)nk −yk

⎫⎬
⎭,

where π (j) =
(
π(j,1), ..., π(j,Pj )

)
and π(j,p) is the pth distinct response rate for model Mj.

Let MK ,P denote the model space over the K baskets under the assumption that there are no more than
P distinct response rates (necessarily P ≤ K). Each model in MK ,P corresponds to a distinct classification
of the K baskets into sets, within which response rates are equivalent and across which the response
rates differ. In the complete model space, denoted as MK ,K , the two most extreme models are the fully
constrained model where πh = πl for all h and l (a common response rate for all baskets) and the
unconstrained model where all basket-specific response rates are allowed to differ (i.e., πh �= πl for
h �= l).

The number of models in MK ,P, denoted by J , is given by the following formula:

J =
P∑
p

[
1

p!
p∑

j=0

(−1)p−j jK

(
p

j

)]
.

Note that when K is moderately large and P is unrestricted, the number of models is substantial (e.g.,
J = 115 975 for K = P = 10). By exploiting closed-forms for posterior quantities used to make inference,
the proposed BMA design approach remains computationally feasible even when averaging over complete
model spaces for K ≥ 10. Details on the computational feasibility of our BMA approach are provided in
Section 4.3.

3.2.2. Prior elicitation. We envision the proposed design methodology being applied in settings where
it is unlikely that substantial prior information will exist beyond the basic belief that the investigational
treatment will have similar activity levels across baskets and that baskets will likely have some degree of
activity. To elicit a prior in a scenario with multiple competing models, one must elicit a prior probability
for each model Mj and a prior for the distinct response rates π (j) under model Mj.

We propose the following default prior over the model space:

p(Mj) ∝ Pj
α ,

where α ≥ 0 is a tuning parameter for the design. For α = 0, the prior model probabilities are uniform. For
α > 0, the prior model probabilities are elicited such that models with more parameters (and therefore less
borrowing) are given greater weight a priori. We investigate the influence of the prior model probability
tuning parameter in Section 4.1.
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We propose taking π(j,p)

∣∣Mj ∼ Beta (a0, b0) for each j = 1, ..., J and p = 1, ..., Pj. This prior is consistent
with the a priori belief that all baskets will have a similar level of activity. As a default choice, we propose
choosing a0 and b0 such that

a0

a0 + b0
= πA

and a0 + b0 = 1.0 to obtain a weakly informative prior with mean equal to the hypothesized response rate
associated with activity πA.

Given the above formulation of the prior, it follows that

π(j,p)

∣∣D, Mj ∼ Beta
(
a(jp), b(jp)

)
,

where a(jp) = a0 + ∑
k∈�j,p

yk and b(jp) = b0 + ∑
k∈�j,p

(nk − yk) and that

P
(
πk > x

∣∣Mj, D
) =

Pj∏
p=1

[
1 − F

(
x
∣∣a(jp), b(jp)

)]1[k∈�j,p] , (3.1)

where F
(·∣∣a(jp), b(jp)

)
is the cumulative distribution function of a beta random variable with parameters

a(jp) and b(jp). The marginal likelihood for the data conditional on model Mj being the true model, denoted
by p

(
D

∣∣Mj

)
, is

p
(
D

∣∣Mj

) =
K∏

k=1

(
nk

yk

)
×

Pj∏
p=1

B (
a(jp), b(jp)

)
B (a0, b0)

, (3.2)

where B (·, ·) is the complete beta function. The posterior probability for model Mj given the data has the
following general representation

p
(
Mj

∣∣D) = p
(
D

∣∣Mj

)
p(Mj)∑

j′ p
(

D
∣∣Mj′

)
p(Mj′ )

,

and can be computed easily in closed-form based on (3.2) and the prior model probabilities. Inference for
basket k is based on the posterior probability P(πk > x

∣∣D) which can be expressed as a function of the
model-specific posterior probabilities (3.1) and posterior model probabilities (3.2) as follows:

P
(
πk > x

∣∣D) =
∑

j

P
(
πk > x

∣∣Mj, D
)

p
(
Mj

∣∣D)
.

Thus, having fit each model separately, P
(
πk > x

∣∣D)
is straightforward to compute for any x.

3.2.3. Simulation-based tuning for the design. Basket trial designs are typically calibrated using sim-
ulation to ensure a desired set of operating characteristics are obtained. At minimum, the sample sizes
required for the design must be determined via simulation to ensure the trial will have a sufficiently high
true positive rate (TPR) for each active basket given a specified level of activity (i.e., sufficiently high
power). Often constraints are placed on the design so that it controls the FPR at some desired level for
the subset of inactive baskets. For example, the methods proposed by Cunanan and others (2017) and
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Chu and Yuan (2018) use such a strategy. For our BMA design approach, we employ a similar strategy.
We consider I , K , π0, and πA to be fixed design parameters and the quantities {{�i : i = 1, ..., I }, α, φ0, φ1}
as customizable.

The quantities α, φ0, and φ1 need not be determined blindly by grid search although some degree of
grid search may be necessary to finely tune the design’s performance if so desired. Specifically, the value
of φ1 should correspond to a level of evidence thought to be compelling to investigators or to ensure
that the basket-specific FPR is controlled at some acceptable level. For example, if it is desired to have
a basket-specific FPR of approximately δ, then taking φ1 = 1 − δ will achieve that approximately and
also provide a family-wise FPR of approximately K × δ when all baskets are inactive. Guided by our
exploration of BMA designs through simulation, we propose taking α = 2, which balances information
borrowing and stability of the design under varying assumptions on patient accrual. This choice for the
tuning parameter is discussed in more detail in Section 4.1. The choice of φ0 (which defines the futility
criteria P

(
πk >

πA+π0
2 |Di

) ≤ φ0) can be guided by how conservative one wishes to be regarding enrollment
termination in baskets where there is uncertainty regarding whether the treatment has the hypothesized
level of activity. A value of φ0 = 0.5 would result in closing enrollment in a basket if it is more likely than
not to have an activity level less than πA+π0

2 (i.e., half of the hypothesized effect). In contrast, a choice of φ0

much less than 0.5 would be more reasonable when any activity above the threshold π0 would be clinically
meaningful. We have found that choices of φ0 ∈ [0.2, 0.4] provide a reasonable balance regarding closing
inactive baskets early and keeping active baskets open in cases where early data are not highly compelling.

4. SIMULATION STUDIES

In this section, we compare our proposed BMA design with the recently proposed basket trial designs by
Cunanan and others (CUN) and Chu and Yuan (CBH) as well as to a basket trial that implements Simon’s
optimal two-stage design (Simon, 1989) independently in each basket (SIM). Both the SIM and CUN
designs were proposed as two-stage designs whereas the BMA and CBH designs can be implemented with
any number of analyses. Two-stage designs are appealing for logistical purposes since it is known ahead
of time that upon reaching the end of the second stage, future activities can begin in earnest. Because of
this and to facilitate a fair comparison of the four designs, we consider application of the BMA and CBH
designs as two-stage designs in our example applications.

All of the comparator designs allow for the early stoppage of enrollment in a basket due to having
a low likelihood of proving activity in the trial. That is to say, they all allow early stoppage for futility
but not for efficacy. To facilitate fair comparison across methods, we apply the same restriction to our
BMA design. In cases where patients enrolled in the trial have no other treatment options, it would be
unethical to stop enrolling patients in a basket that has demonstrated activity while other baskets are still
being evaluated. We compare the performance of the BMA design with and without early stopping for
demonstrated activity in Appendix A supplementary material available at Biostatistics online.

In the following design examples, we consider the case where there are K = 5 baskets and assume an
inactive (null) response rate equal to π0 = 0.15 and a target alternative response rate equal to πA = 0.45.
Our focus is testing the hypothesis H0 : πk ≤ π0 versus H1 : πk > π0 for each k = 1, . . . , K . The
hypotheses tested in our example and the chosen inactive (null) response rate mirrors that used for the
Vemurafenib basket trial (Hyman and others, 2015).

The SIM design requires that each basket enroll a fixed number of patients. For example, for π0 = 0.15,
πA = 0.45, and to achieve a basket-specific FPR of 0.01, each basket must enroll 9 patients in stage 1 and an
additional 18 patients in stage 2 (if proceeding to that stage). The requirement that each basket has a precise
number of patients is not ideal (and perhaps not practical) for a basket trial. Thus, in our evaluation of the
BMA, CUN, and CBH designs, we placed more realistic restrictions on the minimum number of patients
required for each basket (i.e., �i,min) to trigger an analysis. For the optimal BMA, CUN, and CBHM

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz014#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz014#supplementary-data
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designs, the target number of patients to enroll in stage 1 for each basket was 7, 8, and 10, respectively. We
imposed the requirement that baskets would continue to enroll until each basket had at least four patients.
Reaching the per-basket minimum increment in all active baskets and the overall enrollment total would
trigger the stage 1 analysis. The requirements were imposed on baskets that proceeded into stage 2 for
the BMA and CBH designs. Such constraints are not necessary for the CUN design, because in stage 2
all baskets are either analyzed separately (and hence require a fixed number of patients for each basket)
or they are pooled (and hence only the total enrollment would be fixed).

Subject to the minimum enrollment requirements in each basket, we evaluated the performance of the
designs based on varied accrual assumptions including uniform accrual across all baskets, slow accrual
in active baskets, and fast accrual in active baskets. For the uniform accrual scenario, we assumed accrual
in each basket followed an independent homogeneous Poisson process (Ross, 1996) with rate parameter
λ = 2. This implies that interarrival times for patients in each basket are independent and identically
distributed according to an exponential distribution with mean 0.5 so that approximately two patients
enroll in each basket each month. For the case where active baskets accrue patients slowly, we set λ = 1
for the active baskets and λ = 2 for the inactive ones. Thus, the active baskets enrolled half as fast as the
inactive baskets in this scenario. The slow enrolling case provides a conservative viewpoint for evaluating
design performance in the presence of unbalanced enrollment since all the lower enrolling baskets were
the active ones. For the case where active baskets accrue patients more quickly, we reversed the rate
parameters from those described above so that active baskets had rate parameter λ = 2 and inactive
baskets had rate parameter λ = 1.

We required certain desirable operating characteristics to be met for each design method to facilitate
comparisons of their performance. Define the family-wise FPR (i.e., the family-wise type I error rate) as the
probability of declaring at least one basket is active among the set that are inactive and the basket-specific
FPR as the probability of declaring a given basket is active when it is actually inactive. The basket-specific
TPR (i.e., basket-specific power) is defined analogously. We required all designs to meet the following
three criteria:

(1) For any accrual scenario, the family-wise FPR must be ≤0.05 when all baskets are inactive (i.e.,
πk = π0 for k = 1, ..., K ).

(2) Under the uniform accrual scenario with exactly one active basket, its basket-specific TPR must be
≥0.78 (assuming response rate equal to πA).

(3) Under the slow active accrual scenario with exactly one active basket, its basket-specific TPR must
be ≥0.60 (assuming response rate equal to πA).

Criterion (1) requires that the family-wise FPR is well-controlled when the investigational product is
inactive for all baskets. Criterion (2) requires that when sample sizes in each basket are balanced in
expectation, the designs provide high basket-specific TPR values even in the case where only one basket
is active. For reference, the implemented SIM design has a basket-specific TPR approximately equal to
0.81. Thus, criterion (2) mandates that in the case where only one basket is active with activity level πA,
its TPR can drop by more than 0.03 relative to the SIM design as a result of borrowing information across
baskets. Criterion (3) places an analogous bound for the extreme case of slow active accrual. Criteria
(2) and (3) determine what one is willing to trade in terms of TPR degradation in order to potentially
gain efficiency over non-borrowing designs when multiple baskets are active as expected. Our choice of
threshold values 0.05, 0.78, and 0.60 used for criterion (1), (2), and (3), respectively, should not be viewed
as the correct choices. They are simply reasonable choices in the judgment of the authors. Given the
imposed constraints above, we can compare the four designs on their ability to control the family-wise
FPR when a proper subset of baskets are inactive (i.e., less than K of them), as well as with regard to their
basket-specific TPR values, and expected samples sizes and trial durations.
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Table 2. Estimated true and false positive rates under varying accrual assumptions

# —– Family-wise FPR —– —– Basket-specific TPR —–

Accrual Act. BMA CBH CUN SIM BMA CBH CUN SIM

Uniform 0 0.05 0.05 0.05 0.05 — — — —
1 0.05 0.05 0.06 0.04 0.78 0.78 0.78 0.82
2 0.05 0.04 0.07 0.03 0.81 0.83 0.83 0.81
3 0.04 0.03 0.10 0.02 0.83 0.84 0.85 0.81
4 0.02 0.03 0.16 0.01 0.85 0.86 0.86 0.81
5 — — — — 0.87 0.89 0.89 0.81

Fast active 0 0.05 0.05 0.05 0.05 — — — —
1 0.06 0.05 0.08 0.04 0.91 0.91 0.84 0.81
2 0.05 0.04 0.10 0.03 0.90 0.91 0.86 0.81
3 0.05 0.04 0.14 0.02 0.90 0.90 0.87 0.81
4 0.03 0.07 0.22 0.01 0.89 0.89 0.88 0.81
5 — — — — 0.87 0.89 0.89 0.81

Slow active 0 0.05 0.05 0.05 0.05 — — — —
1 0.05 0.05 0.05 0.04 0.65 0.62 0.74 0.81
2 0.04 0.04 0.05 0.03 0.72 0.71 0.80 0.81
3 0.03 0.03 0.06 0.02 0.78 0.77 0.83 0.81
4 0.02 0.02 0.09 0.01 0.82 0.82 0.85 0.81
5 — — — — 0.87 0.89 0.89 0.81

In what follows, we present the operating characteristics of the BMA, CBH, CUN, and SIM designs
after optimization through simulation (i.e., tuning) to achieve goals (1)–(3) and to provide the minimum
expected sample size under the uniform accrual scenario when all baskets are inactive. Appendix B of the
supplementary material available at Biostatistics online presents the optimal design inputs for each method
(e.g., target sample size for each stage). The optimal BMA design was obtained by taking on �1 = 7,
�2 = 16, φ1 = 0.985, φ0 = 0.275, and α = 2. All operating characteristics presented were estimated
based on ≥200 000 simulated basket trials. Analyses for the CBH design required Markov chain Monte
Carlo (MCMC) methods and each used 20 000 posterior samples obtained from a Metropolis–Hastings
sampler. Analyses for all other methods, including the BMA approach, are based on exact calculations
(i.e., obtainable without approximation or Monte Carlo error).

Table 2 presents the estimated TPR and FPR for each design under the three accrual scenarios. For
these simulations, all inactive baskets have response rates equal to π0 = 0.15 and all active baskets have
response rates equal to πA = 0.45. Thus, the basket-specific TPR is the same for all active baskets in a
given scenario.

Focusing first on the family-wise FPR results, the only striking detail is that the CUN method is unable
to control the family-wise FPR at the targeted level (0.05) when the number of active baskets is near K .
The performance is exceedingly poor under the fast active accrual scenario (over four times the nominal
level) but is also poor for the uniform accrual scenario (over three times the nominal level). In particular,
when only one basket is inactive, the family-wise FPR is 2–3 times the targeted level. The BMA and CBH
designs control family-wise FPR quite well with the only inflation for the BMA and CBH designs coming
in the fast active accrual scenario. In that case, the degree of inflation is quite small.

For the basket-specific TPR results, one can see that the information borrowing designs (i.e., BMA,
CBH, and CUN) all provide increased basket-specific TPR values compared to the SIM design when

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz014#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz014#supplementary-data
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Table 3. Estimated expected sample size and trial duration under varying accrual assumptions

# —– Expected sample size —– —– Expected trial duration —–

Accrual Act. BMA CBH CUN SIM BMA CBH CUN SIM

Uniform 0 59.7 61.6 63.5 57.7 9.9 8.4 9.7 10.4
1 70.3 75.9 78.6 70.4 10.7 11.2 12.5 13.6
2 80.9 87.4 89.6 83.3 11.1 11.8 13.6 14.8
3 91.4 97.7 98.0 96.1 11.3 12.0 14.0 15.5
4 100.7 107.6 102.8 108.7 11.4 12.0 13.7 16.0
5 109.0 116.7 96.8 121.5 11.4 12.0 11.8 16.3

Fast active 0 59.7 61.6 63.5 57.7 19.7 16.7 19.5 20.8
1 76.2 80.0 78.9 70.4 16.7 17.3 22.4 20.3
2 89.8 93.1 88.5 83.2 15.1 15.7 21.3 19.5
3 100.1 104.1 96.3 96.0 13.9 14.4 18.9 18.6
4 106.3 112.6 100.5 108.7 12.6 13.3 15.5 17.5
5 109.0 116.7 96.7 121.6 11.4 12.0 11.8 16.3

Slow active 0 59.8 61.5 63.5 57.7 9.9 8.4 9.7 10.4
1 72.0 75.0 83.7 70.4 14.6 14.3 21.1 24.7
2 82.8 86.0 97.4 83.2 17.5 17.7 25.6 28.8
3 92.4 95.7 106.6 96.0 19.6 20.0 27.6 30.6
4 101.1 105.6 111.3 108.8 21.2 21.9 28.2 31.8
5 109.0 116.7 96.8 121.6 22.7 24.0 23.5 32.6

the number of active baskets is at least two under the uniform accrual scenario. The basket-specific TPR
gains are even greater for the fast active accrual scenario with the gains in the BMA and CBH designs
outpacing those of the CUN design. However, for the slow active accrual scenario the basket-specific
TPR values for the information borrowing designs only exceed those of the SIM design when there are
at least three (CUN) or four (BMA and CBH) baskets active. In this case, it is the CUN design that has
the least reduction in TPR values relative to the SIM design but, as noted before, it has a notably inflated
family-wise FPR in the four active basket case.

When evaluating basket-specific TPR values across the three accrual scenarios, two points are critical
to keep in mind. First, the SIM design requires equal enrollment in all baskets (regardless of how slowly or
quickly patients could be accrued in the baskets). The end result of this is that basket-specific TPR values
are invariant to accrual rates but also that it can take substantially longer to complete study of all baskets as
shown in Table 3. In the slow active accrual scenario where there is only one inactive basket, the expected
trial duration associated with the SIM design is 50% longer than the BMA design (31.8/21.2 ≈ 1.50) .

The second point is that the maximum basket-specific TPR value decrease is associated with the case
where there is one active basket that enrolls half as fast as all others. This is an extreme scenario and
although it is possible, it should not be construed as being the most likely scenario in general. The slow
active accrual scenario provides a reasonable bound on how much the basket-specific TPR values can be
degraded due to substantial deviations from uniform accrual.

Table 3 presents the expected trial durations for each design method as well as the expected sample
size. As was the case regarding FPR and TPR, performance of the BMA and CBH designs are quite
similar. The BMA design has modestly lower expected sample size than the CBH across all scenarios
(3–6.5% lower). The BMA design comparison to the CUN design is less one-sided. For the uniform and
slow active accrual scenarios the BMA design has comparatively smaller samples sizes for all scenarios
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Table 4. Design operating characteristics for varied prior model probability tuning parameter

——— α = 0 ——— ——— α = 2 ——— ——— α = 4 ———

# FW- Sample FW- Sample FW- Sample
Accrual Active FPR TPR size FPR TPR size FPR TPR size

Uniform 0 0.03 — 52.5 0.05 — 59.7 0.07 — 64.1
1 0.05 0.70 67.4 0.05 0.79 70.3 0.05 0.82 72.1
4 0.06 0.87 103.2 0.02 0.85 100.7 0.02 0.83 98.9
5 — 0.92 104.3 — 0.87 108.9 — 0.83 108.0

Fast active 0 0.03 — 52.5 0.05 — 59.8 0.07 — 64.0
1 0.06 0.86 75.6 0.06 0.90 76.2 0.06 0.92 76.7
4 0.08 0.91 110.6 0.03 0.89 106.3 0.02 0.86 105.3
5 — 0.92 104.4 — 0.87 109.1 — 0.83 108.1

Slow active 0 0.03 — 52.5 0.05 — 59.8 0.07 — 64.1
1 0.04 0.52 67.4 0.05 0.65 71.9 0.05 0.71 74.8
4 0.04 0.83 102.7 0.02 0.82 101.1 0.01 0.80 99.9
5 — 0.92 104.4 — 0.87 109.0 — 0.83 108.0

except when all baskets are active. For the fast active accrual scenario, the CUN design provides smaller
sample sizes unless less than or equal to one basket is active. Relative to the SIM design, the BMA design
has smaller sample size except for the case where all baskets are inactive, and as much as a 10% reduction
when all baskets are active. As noted previously, the information borrowing designs lead to shorter trials
on average compared to the SIM design as a result of allowing variable enrollment in the baskets. Among
the information borrowing designs, the BMA design generally leads to the shortest trial duration except
in the case where all baskets are inactive where the CBH design performs best.

In Appendix C of the supplementary material available at Biostatistics online, we compare the perfor-
mance of the four designs with respect to point estimate bias for the basket-specific response rates. In
general, the degree of bias in point estimates of the basket-specific response rates is comparable across the
four methods. In Appendix D of the supplementary material available at Biostatistics online, we discuss
the performance of the designs when activity levels are heterogeneous. In particular, we evaluate the
performance of the four designs when four out of five baskets are active but when three of those four have
half the hypothesized level of benefit (i.e., response rate equal to 0.30 instead of 0.45). We also look at a
case with extreme response rate heterogeneity with basket-specific response rates ranging from 0.05 up
to 0.45. In both cases, the BMA design has TPR values greater than or equal to those for all other designs
and provides control of the family-wise FPR at the nominal level.

4.1. Understanding the prior model probability tuning parameter

Table 4 presents estimated operating characteristics for the optimal BMA design described above (cor-
responding to a prior model probability tuning parameter value of α = 2) as well as BMA designs with
design parameters equal to those from the optimal design except that we modified α to be either 0 or 4
for comparison purposes. Note that taking α = 0 corresponds to a uniform prior over the model space.
Comparing the design with α = 0 to the design with α = 2 (i.e., the optimal design), one can see that
the design based on uniform prior model probabilities tends to result in family-wise FPR values that

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz014#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz014#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz014#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz014#supplementary-data
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increase with the number of active baskets, a behavior not exhibited when α = 2. The opposite behav-
ior occurs when α = 4. For the case where α = 4, the family-wise FPR is greatest when all baskets
are inactive.

As one compares the basket-specific TPR values for the three values of α, it is apparent that as α

increases there is more stability in the TPR values across accrual scenarios but sample sizes generally
increase as well. This is consistent with the fact that less information is being borrowed across baskets and
therefore a smaller likelihood that baskets will close early, leading to longer trials and greater enrollment.
The value α = 2 provides a degree of balance between more information borrowing/more variable TPR
values (α = 0) and less information borrowing/more stable TPR values (α = 4).

4.2. Estimable quantities specific to BMA approach

Aside from identifying which baskets have a response rate above a specified threshold, it is also of interest to
characterize which baskets have the same or similar response rates. BMA provides a unique and appealing
framework for doing this. Specifically, BMA provides a natural metric to quantify the likelihood that two
baskets have the same response rate:

P
(
πk = πl

∣∣D) =
∑

j

Pj∑
p=1

1
[
k ∈ �j,p, l ∈ �j,p

]
p(Mj

∣∣D),

where 1
[
k ∈ �j,p, l ∈ �j,p

]
is an indicator that baskets k and l have the same parameter for model j. In

other words, to compute the posterior probability of response rate equivalence for two baskets, one only
needs to sum the posterior model probabilities for the models where the two baskets share a common
parameter.

By way of example, consider a dataset corresponding to K = 5 baskets with sample size vector n =
(20, 20, 20, 20, 20) and corresponding response vector y = (3, 4, 9, 10, 10). Using the same BMA design
inputs previously described (e.g., α = 2, etc.), one obtains P

(
π1 = π2

∣∣D) = 0.31, P
(
π3 = π4

∣∣D) = 0.27,
and P

(
π4 = π5

∣∣D) = 0.28. All other posterior probabilities of response rate equivalence are less than or
equal to 0.07. If instead one takes α = 0, they obtain P

(
π1 = π2

∣∣D) = 0.69, P
(
π3 = π4

∣∣D) = 0.62, and
P

(
π4 = π5

∣∣D) = 0.66. In this case, all other posterior probabilities of response rate equivalence are less
than or equal to 0.14. For either choice of α, in this hypothetical dataset, one can see that the data suggest
a natural grouping of baskets 1 and 2 as well as baskets 4 and 5 into classes of similar responders.

4.3. Computational efficiency of BMA

One of the major limitations that BMA has faced is that it is computationally demanding to perform. In
order to perform BMA without approximation, one needs to be able to compute the marginal likelihood for
the observed data under competing models and such computations are generally expensive. Our proposed
approach makes use of closed-form expressions for the marginal likelihood of the data and model-specific
posterior quantities, greatly reducing the computational burden of the method. Moreover, many of the
calculations (e.g., evaluations of the Gamma function) are highly repetitive in large scale simulations
and our software uses pre-computation of expensive quantities and look-up tables to avoid unnecessary
repeated computation in large scale simulations.

Nonetheless, since the proposed approach averages over all possible models, the sheer number of models
does present a computational challenge as the number of baskets increases. For example, for K = 10 there
are 115 975 models and for K = 12 there are 4 213 597 models. Figure S1 of the supplementary material
available at Biostatistics online shows the average time required to perform 10 000 simulation studies to

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz014#supplementary-data
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investigate the K + 1 possibilities for the number of active baskets for each of the three accrual scenarios.
Each estimated run time is the average of four identical runs of the set of simulations. Thus, the total
number of simulation studies is 10 000 × (K + 1) × 3 for each point in the figure. For K = 5 this
corresponds 180 000 simulation studies and for K = 10 to 330 000 simulation studies.

Using a single compute core (e.g., a single computer without making use of multi-core processing),
the R (R Core Team, 2016) code written by the authors can perform the necessary simulations for K = 5
baskets in less than 15 min. For K = 10 baskets the simulations can be completed in less than 1 day. We
would add that the idea that users are restricted to a single computing core is antequated. The reality is that
with pay-for-use high performance computing services (e.g., Google Cloud Platform) virtually anyone
can reap the benefits of substantial computing power without significant long-term cost. By making use
of multiple computing cores (from a single user’s machine, an on-premises high performance computing
cluster, or from a pay-for-use cloud computing platform), simulation studies can be divided into sets and
performed in parallel fashion to reduce wall-clock run time. For example, by making use of 25 available
computing cores on the Longleaf computing cluster at the University of North Carolina at Chapel Hill,
the authors were able to reduce the time required for simulations to complete in the K = 10 case from
16.9 h to 1.1 h. Note that the total time reduction is not by a factor of 25 due to variable performance of
the computing cores.

Lastly, for applications with K larger than what we consider here, it is possible to transition from a
direct computation approach to a stochastic algorithm that use reversible jump MCMC to compute posterior
quantities. We refer interested readers to the seminal work by Green (1995). In particular, Green considers
a partition problem similar to that discussed in this article and proposes a simple MCMC algorithm for
model fitting.

5. DISCUSSION

Because of the tradeoffs inherent in adopting an information borrowing approach to designing basket
trials, one should not expect one approach to be uniformly better than all others. Even when comparing
the information borrowing designs to the SIM design, we see there are instances where the latter is the top
performer. The motivation behind information borrowing designs for basket trials is the belief that many
or most baskets will have similar activity and it is under that reality that such designs provide notable
efficiency gains (e.g., increased TPRs over standard designs). The particular BMA design we evaluated
in our simulation studies attempted to strike a balance in performance between scenarios where most
baskets have activity and scenarios where most baskets do not. Others may prefer a design that is more
or less aggressive regarding information borrowing. Being more or less aggressive regarding information
borrowing is closely related to the choice of the prior model probability tuning parameter as illustrated
by Table 4. There is no correct choice in that regard but it should be clear that a tradeoff is always being
made.

Our results indicate that the performance of the BMA design using α = 2 is quite similar to that of
the CBH design. We would highlight two points that tilt the argument in favor of the BMA design. First,
the BMA design has significantly decreased computational burden for trials with a moderate number of
baskets as a result of not requiring MCMC for model fitting. Second, BMA has a very natural mechanism
for classifying baskets into groups of similar responders using posterior model probabilities which is be
helpful for planning future studies.

According to U.S. FDA guidance on adaptive designs (Food and Drug Administration, 2018), “for sim-
ulations intended to estimate Type I error probability, hypothetical clinical trials would be simulated under
a series of assumptions compatible with the null hypothesis.” The ability to perform large scale simula-
tions that investigate variable accrual rates and activity levels in baskets is critical and the computational
efficiency of the proposed BMA framework allows for this. Our proposal to examine the performance of
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basket trial designs under uniform patient accrual, slow active accrual, and fast active accrual and for every
possible number of active baskets under each accrual scenario is an attempt to define a set of scenarios
that adhere to the spirit of the FDA guidance. Evaluating the performance of the design over this broad
set of scenarios provides a comprehensive picture of potential efficiency gains and losses associated with
using BMA (or any information borrowing design).

In our design application, we evaluated activity levels in each basket against a common inactivity
threshold of π0 = 0.15 which was motivated by the Vemurafenib basket trial (Hyman and others, 2015).
However, nothing about the BMA approach we have developed requires evaluation against such a common
threshold. It is, however, true that the framework we have developed borrows information to the degree
that basket-specific response rates are homogeneous across subsets of baskets. In contrast, the traditional
BHM allows for information borrowing to be governed by the degree to which the response rates in
each basket differ from hypothesized values which can differ across baskets. In future work, we plan to
extend the BMA framework developed in this article to support this more general strategy for information
borrowing.

In this article, we focused on the design of a basket trial evaluating a single treatment that targets
a genomic alteration present in multiple tumor histologies. Given the favorable performance of BMA-
based designs in this setting, we hope to extend our method to more general settings evaluating multiple
treatments in response-adaptive randomized trials. Recent innovations in this more complex setting include
the works of Steffen and others (2017) and Trippa and Alexander (2017). The authors are optimistic that
an approach based on BMA in this more complicated setting could be beneficial if the computational
challenges can be adequately solved.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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