
The Scale Transformed Power Prior
with Applications to Studies with Different Endpoints

Joseph G. Ibrahim

Joint work with Brady Nifong and Matthew A. Psioda



Introduction

• No two studies will ever be identical (Ibrahim et al. 2001)

• However, even if studies are not identical, historical data can provide
useful information to a current study

• The availability of historical data is quite common in clinical trials,
carcinogenicity studies, and environmental studies, where large data
bases are available from similar previous studies (Ibrahim and Chen
2000, Ibrahim et al. 2015)

2 / 74



Practical Motivation

• Motivation: settings in which historical data and the current data
involve outcomes with different distributions

• Ex 1: comprehensive post-acute stroke services study (COMPASS)
• Ex 2: Eastern Cooperative Oncology Group (ECOG) phase III clinical

trials for melanoma
• Ex 3: ECOG phase II clinical trials for liver cancer
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Ex 1: COMPASS Study

• The COMPASS study (Duncan et al. 2017) was conducted at 41
hospitals (40 randomized units) in North Carolina.

• Interested in the effect of the COMPASS care model on the primary
endpoint as well as several secondary endpoints

• The study includes part I and part II data with several correlated
secondary endpoints.

• Binary fall - measured whether the participant had fallen since hospital
discharge or 90 days post-stroke

• Continuous patient-recorded outcomes measurement information
system (PROMIS) score for physical function

• The PROMIS physical function score is only measured in part II
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Ex 2: ECOG Melanoma Data

• ECOG phase III clinical trials, E2696 and E1694, focused on a
post-operative chemotherapy, Interferon Alpha-2b (IFN) in
comparison to a vaccine (GMK).

• The historical study, E2696, contains the primary, continuous,
endpoint for immunoglobulin M (IgM) antibody levels at day 28, with
the presence of such antibodies being shown to improve disease-free
survival (Kirkwood et al. 2001).

• The current study, E1694, contains the a primary endpoint of survival
time as described in Brown and Ibrahim (2003).

• The historical and current data sets contain the same covariates, such
as age, treatment, and cancer stage.
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Ex 3: ECOG Liver Data

• E2282 and E1286 phase II ECOG studies to to evaluate new
treatments in patients with liver cancer (Lipsitz and Ibrahim 1996)

• The primary interest here is how the outcome, survival time from
entry on the study until death, differs with respect to five
dichotomous baseline covariates (Ibrahim et al. 1999).

• The historical data set E2282 contains the response variable nodes,
which is a count variable for the number of nodes an individual
patient has

• The current data set E1286, contains the response variable survival
time
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Use of Historical Data

• Two common ways to incorporate historical data are through the use
of the power prior or the commensurate prior

• Let θ be the parameter of interest

• Let D0 = {y0,X0, n0} denote the historical data
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Power Prior

The Power Prior (PP) developed by Ibrahim and Chen (2000) is as follows:

π(θ|D0) ∝ L(θ|D0)
a0π0(θ) (1)

Where:

• L(θ|D0) is the historical data likelihood

• 0 ≤ a0 ≤ 1 weights the historical data relative to the likelihood of the
current study

• π0(θ) is the initial prior
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Power Prior Variants - Fixed a0

Partial Borrowing Power Prior: (Chen et al. 2011)

π(θ|D0, a0) ∝
[ ∫

L(θ|D0, ξ)a0g(ξ)dξ
]
π0(θ),

where ξ is a vector of latent variables or nuisance parameters in the model,
and g(ξ) is the distribution of the latent (nuisance) variables (parameters)

Asymptotic Power Prior:

π(θ|D0) ∝ exp

{
−a0

2
(θ − θ̂0)T I0(θ̂0)(θ − θ̂0)

}
,

where θ̂0 is the historical data maximum likelihood estimate and I0(·) is
the historical data likelihood information matrix
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Commensurate Prior

The commensurate prior developed by Hobbs et al. (2011) utilizes
historical information when there is strong evidence of agreement between
the historical and current data.

• Unlike the power prior and it’s variants, the commensurate prior
assumes that the historical and current data parameters differ,
denoted η and θ respectively.

• This allows the use of a parameter that measures the agreement
between η and θ, denoted τ

• Construct a prior for θ that is normally distributed around η with a
precision of τ , the commensurate parameter

• Offers a clear interpretation of commensurablility between η and θ
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Commensurate Prior

The Commensurate Prior is then written as

πc(θ|D0,η, τ) ∝ L(η|D0)π(θ|η, τ)π0(θ), (2)

where π0(θ) is the initial prior for θ, L(θ | D0) is the historical data
likelihood and π(θ|η, τ) denotes the p dimensional normal density with
mean η and covariance matrix τ−1Ip, in which Ip is the p× p identity
matrix.

• as τ −→ 0, the historical data is effectively ignored

• as τ −→∞, θ −→ η, and the data is essentially pooled
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The Scale Transformed Power Prior for
Generalized Linear Models
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Formulation

• We desire that the scale of θ based on the historical data = scale of
θ based on the current data.

• We know that I−1(θ) is the asymptotic covariance matrix of the MLE
of θ.

• Let η and I0(η) denote the historical data parameter and Fisher
information matrix

• Let θ and I1(θ) denote the current data parameter and Fisher
information matrix.

• The corresponding standardized or “scaled” parameters are

I
1/2
0 (η)η and I

1/2
1 (θ)θ
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Methodological Motivation

• Thus, we desire
I
1/2
0 (η)η = I

1/2
1 (θ)θ. (3)

• In order to solve Equation (3) algebraically, one would have to solve
for θ (or η), which is difficult unless the historical (current)
information matrix does not depend on θ, such as when the historical
data model is a normal linear model.

• We denote the transformation in general as η = g(θ), and thus the
scale transformed power prior is a function of g(θ).

• As a final step, in the presence of covariates, we compute I1 based on
the historical data covariates to avoid double use of the current data
covariates.
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Methodological Motivation - Special Case

• Under the case in which the historical data model is a linear model,
we can solve algebraically for η as

η = I
−1/2
0 I

1/2
1 (θ)θ

≡ A(θ)θ

≡ g(θ),

where A(θ) = I
−1/2
0 I

1/2
1 (θ).

• Note, in the case where the current data follow a linear model, one
can perform the analysis using the straPP by sampling from the
posterior distribution for η and use the transformation
θ = A−1(η)η = g−1(η) to obtain samples from the posterior
distribution for θ.
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Formulation

The Scale Transformed Power Prior (straPP) can be derived from the
power prior in Equation (1) using the transformation η = g(θ), as

πs(θ|D0) ∝ L(g(θ)|D0)
a0π0(g(θ))

∣∣∣∣dg(θ)dθ

∣∣∣∣ , (4)

where |dg(θ)/dθ| is the determinant of the Jacobian of the transformation.

The straPP reduces to the power prior in the case g(θ) = θ, that is, A(θ)
is the identity matrix.

When a0 = 0, we set the straPP equal to the initial prior
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Expression for the Jacobian

In general, the transformation implied by (3) cannot be calculated
algebraically. However, the Jacobian can be calculated via the chain rule
and implicit differentiation as shown below.

{[
d

dη
I
1/2
0 (η)

]
η + I

1/2
0 (η)

}
dη

dθ
=

[
d

dθ
I
1/2
1 (θ)

]
θ + I

1/2
1 (θ)

⇒ dη

dθ
=

{[
d

dη
I
1/2
0 (η)

]
η + I

1/2
0 (η)

}−1
×
{[

d

dθ
I
1/2
1 (θ)

]
θ + I

1/2
1 (θ)

}
The derivative of I

1/2
1 (θ) can be written as

dI
1/2
1 (θ)

dθ
=

(
dI

1/2
1 (θ)

dθ0
, . . . ,

dI
1/2
1 (θ)

dθp−1

)
.

17 / 74



Expression for the Jacobian

For j = 0, . . . , p− 1, the derivative can be decomposed using a direct
application of the product rule as

dI1(θ)/dθj = I
1/2
1 (θ)[dI

1/2
1 (θ)/dθj ] + [dI

1/2
1 (θ)/dθj ]I

1/2
1 (θ). (5)

Equation (5) can be expressed in the form of the Sylvester equation
(Sylvester (1884)) . Let Ip denote the p× p identity matrix. Then,
following Laub (2005), the required derivatives may be represented as
follows:

vec

(
dI

1/2
1 (θ)

dθj

)
=

(
I
1/2
1 (θ)⊗ Ip + Ip ⊗ I1/21 (θ)

)−1
vec

(
dI1(θ)

dθj

)
,

where vec(·) denotes the vectorization of a matrix, in which columns are
stacked to convert a n× p matrix into a np× 1 vector. The derivative of

I
1/2
0 (η) is calculated analogously.

18 / 74



Simple Normal IID Example

• Suppose the historical data is given by y0i ∼ N(η, σ20), are iid for
i = 1, . . . , n0 and the current data is yi ∼ N(θ, σ21) are iid for
i = 1, . . . , n1.

• The Fisher information based on the historical data is n0/σ
2
0 and the

Fisher information from the current data likelihood, evaluated at the
historical covariate vector is n0/σ

2
1.
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Simple Normal IID Example

• Then, applying the transformation for this example, we obtain

A(θ) =
σ0
σ1
,

so that the scaled transformed parameter in going from historical to
current data is

η =

(
σ0
σ1

)
θ.

• We see that η (the scaled θ) is the ratio of the standard deviations
based on the historical and current data multiplied by θ.

• Moreover, if σ0 = σ1 in this example, then A(θ) = 1, and the
transformation is the identity transformation as expected.
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Partial-Borrowing straPP

• Let θp×1 be partitioned into two independent vectors such that
θ = (θ1,θ2).

• θ1 is r × 1, and θ2 is (p− r)× 1

• Similarly, let ηs×1 be partitioned into two independent vectors such
that η = (η1,η2).

• η1 is r × 1, and η2 is (s− r)× 1

• The partial-borrowing straPP is then derived according to the
transformation

I
1/2
0 (η)η1 = I

1/2
1 (θ)θ1, (6)

where here I0(η) and I1(θ) denote the r × r submatrices of the
Fisher information matrices for the current and historical data models,
respectively.
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Partial-Borrowing straPP

• In general, η1 can not be solved for in Equation (6), so we will refer
to the transformation as g1(θ,η2)

• Suppose we would like to use straPP on θ1 and some other arbitrary
prior, call this π0(θ2), on θ2. Then we can write the partial borrowing
straPP as

π(θ,η2 | D0) = πs(θ1,η2 | θ2, D0, )π0(θ2)

∝ L(g1(θ,η2),η2 | θ2, D0)
a0π0(g1(θ,η2),η2 | θ2)

×
∣∣∣∣dg1(θ,η2)dθ1

∣∣∣∣π0(θ2). (7)
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straPP for Generalized Linear Models

• Assume the historical and current data sets are generalized linear
models (GLMs)

• Let y0i denote the ith response for the historical data set and y1j
denotes the jth response for the current data set

• Denote the ith row of X0 as xT0i, and let xT1j denote the jth row of X1
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straPP for Generalized Linear Models

• Let k = 0, 1 be the index for the historical and current data,
respectively.

• Let ξk = (β, φk), where β = (β0, . . . , βp−1)
′ denotes the p× 1 vector

of regression parameters, and φk denotes the scalar dispersion
parameter. For i = 1, . . . , nk, an individual response is distributed as
follows:

f(yki|ξk) = exp{φk[ykihk(xTkiβ)− bk(hk(xTkiβ))− ck(yki)]

− 1

2
sk(yki, φk)},

where hk(·) is the link function, and bk(·), ck(·), and sk(·) are some
known functions for data Dk, k = 0, 1.

• φ0, φ1 are scalar dispersion parameters.
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Comparison to the Power Prior

Suppose the historical and current data arise from linear regression model
with known variances, referred to as the normal-normal case. Then,

• y0i ∼ N(xT0iη, σ
2
0In0), i = 1,...,n0 ⇒ I0(η) = 1

σ2
0
X ′0X0, and

• y1i ∼ N(xT1iβ, σ
2
1In1), i = 1,...,n1 ⇒ I1(β|X0) = 1

σ2
1
X ′0X0.

Further suppose the initial prior is uniform improper.

Then, under this normal-normal case, our scale-transformed parameter is

η = g(β) = A(β)β =
σ0
σ1
β.
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Comparison cont. . .

Power Prior (PP):

β ∼ N
(

(X ′0X0)
−1X ′0Y0,

(
σ20
a0

)
(X ′0X0)

−1
)

straPP:

β ∼ N
(
σ1
σ0

(X ′0X0)
−1X ′0Y0,

(
σ20
a0

)(
σ21
σ20

)
(X ′0X0)

−1
)

∼ N
(
σ1
σ0

(X ′0X0)
−1X ′0Y0,

(
σ21
a0

)
(X ′0X0)

−1
)
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Properties of straPP

Theorem

Let βj denote the (j+1)st element of β, j = 0,. . . , p-1.

Further let β̂sj denote the posterior mean of βj under the straPP and β̂ppj
denote the posterior mean of βj under the PP.
Then, for the normal-normal case, where g(β) = σ0

σ1
β, the straPP has a

lower MSE than the power prior under the following condition:

Var(β̂sj)− Var(β̂ppj)[
Percent Bias(β̂ppj)

]2 < β2j

In general, the Percent Bias of β̂ppj depends on βj .

27 / 74



Simulation Setup

Using this normal-normal set up, we assume our data has an intercept and
a treatment indicator (p=2).
The following simulations use the parameter values:

• a0 = 0.5

• n0 = 50; n1 = 100

• β = (β0, β1)
T

• β0 = 1; β1 ∈ {0, 1.8, by = 0.1}
• η = g(β) = σ0

σ1
β

Along with the straPP and PP, we also used a uniform improper prior
(UIP). We generated 5,000 data sets and used Metropolis-Hastings
MCMC for each model with a Monte Carlo sample size of 25,000 and a
burn-in of 2,000.
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Simulation cont. . .

In this simulation, the threshold value from the theorem can be calculated
exactly given (σ0, σ1, a0, n0, n1):

β∗1 =

√√√√√√σ2s1

[
n1+a20n0

n1+a0n0

]
− σ2pp1

[
n1/σ2

1+a
2
0n0/σ2

0

n1/σ2
1+a0n0/σ2

0

]
(
n1

σ2
1
− a0n0

σ2
0

)−2 (
a0n0
σ0

)2 (
1
σ1
− 1

σ0

)2
Where σ2s1 =

4σ2
1

n1+a0n0
is the posterior variance of β1 from the straPP and

σ2pp1 = 4
(
n1

σ2
1

+ a0n0

σ2
0

)−1
is the posterior variance of β1 from the power

prior.
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Figure 1: σ0 = 3 > σ1 = 1
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Figure 2: σ0 = 1 < σ1 = 3
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Simulation Summary

• The posterior mean from the straPP is always unbiased in the
normal-normal case.

• When σ0 > σ1, the MSE for straPP is always lower than PP.

• When σ0 < σ1, there is a trade off between the bias and variance that
determines when the MSE is lower for the straPP.

• Changing the input parameter values shifts the magnitude of the
graphs, but the pattern stays the same.
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Binary-Normal Setup

Suppose both the historical and current data have and intercept and a
treatment indicator with a 1:1 allocation, and are distributed

• y0i ∼ Bern
(
p0i = 1

1+exp{−x′0iη}

)
, i = 1,. . . , n0

• y1i ∼ N(x′1iβ, σ
2
1), i = 1,. . . ,n1

• σ1 is known

Under this case, the historical data information matrix depends on the
regression parameter, so we sample the complementary posterior to obtain
samples for η and then transform them to obtain samples for β.

β = g−1(η) = A−1(η)η = [I
−1/2
1 I

1/2
0 (η)]η
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Priors

For the binary-normal simulation, we also consider the asymptotic power
prior.

1. Uniform Improper: π(β|D0) ∝ 1

2. Power Prior: π(β|D0) ∝ L(β|D0)
a0

3. complementary straPP: π(η|D0) ∝ L(η|D0)
a0
∣∣∣dg−1(η)

dη

∣∣∣
4. Asymptotic Power Prior: π(β|D0) ∝ exp{−a02 (β− β̂)T I0(β̂)(β− β̂)}
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Developing g−1(η)

For the binary-normal simulation, g−1(η) = A−1(η)η is not simple:

g−1(η) = 1
σ1

(
n0 n0/2
n0/2 n0/2

)−1/2
×
√

2
n0

(
pt0(1− pt0) + pt1(1− pt1) pt1(1− pt1)

pt1(1− pt1) pt1(1− pt1)

)1/2

η

in which:

• pt0 = P (y0 = 1|trt 0) = exp(η0)
1+exp(η0)

• pt1 = P (y0 = 1|trt 1) = exp(η0+η1)
1+exp(η0+η1)
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Simulation Setup

The following simulation uses the parameter values:

• a0 = 0.5

• n0 = 100; n1 = 50

• σ1 = 2

• η0 = 0.5; η1 ∈ {0, 2.0, by = 0.05}
• β = g−1(η)

Once again, we generated 5,000 data sets and used Metropolis-Hastings
MCMC for each model with a Monte Carlo sample size of 25,000 and a
burn-in of 2,000.
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Figure 3
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Simulation Summary

• The posterior mean based on the straPP has the smallest variance on
average

• The posterior mean of the straPP no longer retains the unbiasedness
property of the normal-normal case, but still has bias less than or the
power prior in absolute value and less than or equal to the asymptotic
power prior in absolute value

• The posterior mean based on the straPP has the lowest MSE
compared to the other analyzed priors

• Changing the input parameter values shifts the magnitude of the
graphs, but the pattern stays the same.
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Generalized Scale Transformed Power Prior

• The straPP is derived under the assumption that the standardized
parameter values for the historical and current data models are equal.

• This may be a reasonable transformation for rescaling the parameter
in a power prior in settings where the historical data is not of the
same data type as that of the current data.

• Nonetheless, this core assumption of the straPP may be violated in
some cases, in which both a location change and a scale change are
needed in the parameter.

• Thus, it is useful to develop a generalization of the straPP that
provides a degree of robustness when the assumption of equal
standardized parameter values does not hold. We call this
generalization the generalized scale transformed power prior
(Gen-straPP)
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Gen-straPP Formulation

Here we specify

I
1/2
0 (η)η = I

1/2
1 (θ)θ + c0, (8)

where c0 is a p× 1 vector that allows component-specific deviations from
the assumption of equal standardized parameter values for η and θ.

• We denote the transformation as η ≡ gc0(θ).

• c0 = 0 corresponds to the straPP.
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Details on c0

We can take c0 to be fixed or random.

• Fixed: c0 = d0J , where J is a vector of 1’s and d0 is some scalar

• Random: take c0 ∼ N(0, ω0I), where ω0 is a specified positive scalar

There are innumerable choices for fixed c0 and this setting is best
equipped to identify violations in the assumptions of the straPP when the
violations occur across all covariates, but poorly equipped to identify
violations which present in only one covariate.

Therefore, to accommodate various combinations of violations, we suggest
taking c0 to be a random vector.
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Gen-straPP Formulation

Then, the Gen-straPP can be derived from the power prior in (1) using the
transformation in (8). The Gen-straPP is

πg(θ, c0 | D0) = πs(θ | c0, D0)π0(c0)

∝
[
L(gc0(θ) | c0, D0)

a0π0(gc0(θ) | c0)
∣∣∣∣dg(θ)

dθ

∣∣∣∣]π0(c0),
(9)

where π0(c0) denotes the prior for c0.
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Partial-Borrowing Gen-straPP

Similarly to the partial-borrowing straPP, we can develop the partial
borrowing Gen-straPP from the transformation

I
−1/2
0 (η)η1 = I

1/2
1 (θ)θ1 + c0, (10)

where here c0 is an r × 1 vector. We denote the transformation implied by
(10) as g1,c0(θ,η2). The partial-borrowing Gen-straPP is

π(θ,η2, c0 | D0) = πs(θ1,η2 | c0,θ2, D0, )π0(c0)π0(θ2), (11)

where πs(θ1,η2 | c0,θ2, D0, ) is proportional to the expression

L(g1,c0(θ,η2),η2 | c0,θ2, D0)
a0π0(g1,c0(θ,η2),η2 | c0,θ2)

∣∣∣∣dg1(θ,η2)dθ1

∣∣∣∣ .
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Connection to the Commensurate Prior

To derive the relationship between the Gen-straPP and the commensurate
prior, we derive the Gen-straPP in an alternate manner. The Gen-straPP
transformation in (8), can be re-written as

I
1/2
1 (θ)θ = I

1/2
0 (η)η − c0. (12)

When c0 ∼ Np(0, ω0Ip), the standardized current parameter,

θ∗ = I
1/2
1 (θ)θ, is distributed normally about the standardized historical

parameter as

θ∗ | η ∼ Np(I
1/2
0 (η)η, ω0Ip).
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Prior for (θ∗,η)

To complete the specification of the joint prior for the historical and
standardized current parameters, we specify a power prior on η. The joint
prior is

π(θ∗,η) ∝ Np(θ
∗|I1/20 (η)η, ω0Ip)L(η|D0)

a0π0(η).
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To derive the Gen-straPP, we must calculate the joint distribution of the
untransformed current and historical parameters. Let

ξ =

(
θ
η

)
=

(
h(θ∗)
η

)
,

then, when a0 = 1 we can write the Gen-straPP as

π(θ,η) ∝ L(η|D0)Np(I
1/2
1 (θ)θ | I1/20 (η)η, ω0Ip)π0(η)

∣∣∣∣dh(θ∗)

dθ∗

∣∣∣∣ . (13)

This can be thought of as the commensurate prior from (2) in which the
standardized current parameter is normally distributed about the
standardized historical parameter when the commensurate parameter is
equal to the inverse of ω0.
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Additional Binary-Normal Simulations

Using the same parameter values from the earlier binary-normal
simulations, except with a0 = 1.0, we compare the straPP to the
Gen-straPP, and the Gen-straPP to the commensurate prior.

• Using ω0 = 0.1, 0.5, 1.0

• Using τ ∼ Gam(2, b) for the commensurate parameter of the
commensurate prior, with b = 1, 4

Once again, we generated 5,000 data sets and used Metropolis-Hastings
MCMC for each model with a Monte Carlo sample size of 25,000 and a
burn-in of 2,000.
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Figure 4
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Simulation Summary

• The posterior mean based on the straPP has the smallest variance on
average

• The posterior mean based on the Gen-straPP has smaller bias than
the straPP and similar bias to the commensurate prior in absolute
value

• The posterior mean based on the straPP has the lowest MSE
compared to the other analyzed priors, until the true β1 > 0.6, in
which case the Gen-straPP with ω0 = 0.1 has the lowest MSE
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Real Data Example: COMPASS Study

• We had access to the data from hospital site 30, which consisted of
part I (historical) and part II (current) data from the trial.

• We removed observations with missing values of the covariates of
interest for complete case analysis (n0 = 244, n1 = 385).
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Covariates and Response Variables

• Covariates of interest were:
• Indicator for intervention: electronic care plan (eCare plan)
• Indicator for history of stroke or transient ischemic attack (TIA)
• Categorized NIH stroke scale score (NIHSS): 0 = no stroke symptoms,

1-4 = minor stroke symptoms, ≥ 5 moderate-to-severe stroke
symptoms.

• Indicator for non white race

• Historical response: binary fall - whether the participant had fallen
since hospital discharge and 90 days post-stroke

• Current response: continuous PROMIS score for physical function
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Historical and Current Data Distributions

We assume the historical patient outcomes are independently distributed
according to a logistic regression model and the current patient outcomes
are independently distributed according to a linear regression model such
that

• y0i ∼ Bern(pi), i = 1, . . . , 244
• pi = 1/(1 + exp{−xT

0iη})
• ηT = (η0,η

T
1 )

• y1i ∼ N(xT1iβ, σ
2
1), i = 1, . . . , 385

• βT = (β0,β
T
1 )

• φ = 1/σ2
1 is an unknown precision parameter.

• η1 and β1 denote the historical and current covariate regression
parameters.
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Gen-strapp and straPP Setup

• We chose not to borrow from the historical data intercept in each
model tested

• We specify the partial-borrowing straPP and Gen-straPP for the
covariates, and specify a uniform improper prior for the intercept.

• Similar to the binary-normal simulation, we sample the
complementary posterior to obtain samples for η1 and then use the
corresponding transformation to obtain samples for β1

• straPP transformation:

β1 = g−1
1 (η) = [I

−1/2
1 I

1/2
0 (η)]η1

• Gen-straPP transformation:

β1 = g−1
1,c0

(η) = [I
−1/2
1 I

1/2
0 (η)]η1 + [I

−1/2
1 ]c0
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Additional Model Setup

• Additionally we compute the partial-borrowing power prior,
partial-borrowing asymptotic power prior and uniform improper prior.

• For the partial-borrowing power prior and asymptotic power prior, we
specify a uniform improper prior for the intercept

• For the partial-borriwng commensurate prior, we specify a gamma
prior for τ with shape and inverse scale parameters equal to 2

• For all models, we specify a gamma prior for φ with shape and inverse
scale parameters equal to 0.01

• For all models, we used Metropolis-Hastings MCMC with 20,000 MC
samples.
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Choosing a0, ω0

• We ran the Gen-straPP model on the COMPASS data with varying
values of (ω0, a0).

• a0 ∈ {0, 0.1, 0.25, 0.5, 0.75, 1.0}
• ω0 ∈ {0, 0.1, 0.25}

• Values of (ω0, a0) will be chosen based on the lowest deviance
information criterion (DIC), developed by Spiegelhalter et al. (2002).
A similar approach was taken by Ibrahim et al. (2015).

• The DIC is calculated as

DIC(a0) = 2E(Dev(θ) | D,D0, a0)− Dev(θ̄),

where θ̄ = E(θ | D,D0, a0) and Dev(θ) = −2
∑n

i=1 log f(yi | xi,θ).
• Lower values of DIC indicate better performance of the associated prior.

• Then we will use the chosen a0 for the original straPP, power prior,
and asymptotic power prior.
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Table 1: DIC for the Gen-straPP with Various (a0, ω0)

a0

ω0 0.0** 0.1 0.25 0.5 0.75 1.0

0.00 2816.56 2815.23 2815.72 2817.20 2818.88 2820.61
0.10 2816.56 2816.06 2816.17 2817.16 2818.51 2819.63
0.25 2816.56 2816.13 2816.13 2816.77 2817.87 2818.84

Note: *ω0 = 0 is equivalent to the straPP and **a0 = 0 is equivalent to
the uniform improper prior.

We note that we calculated the DIC for the partial-borrowing Gen-straPP
for higher values of ω0 than those shown (up to ω0= 1) which resulted in
similar patterns of DIC with varying a0 for a given value of ω0.
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Table 4: Posterior Estimates when a0 = 0.1

eCare Plan History of Stroke Minor NIHSS Moderate-Severe NIHSS Non-white

Model DIC Mean (SD) 95%HPD Mean (SD) 95%HPD Mean (SD) 95%HPD Mean (SD) 95%HPD Mean (SD) 95%HPD

straPP 2815.23 0.69 (0.95) (-1.16, 2.55) -0.93 (1.16) (-3.29, 1.26) -1.42 (1.07) (-3.53, 0.65) -3.78 (1.08) (-5.89, -1.66) -1.55 (1.56) (-4.23, 1.70)

APP 2815.85 0.28 (0.77) (-1.21, 1.79) -0.37 (0.96) (-2.23, 1.56) -0.73 (0.80) (-2.31, 0.83) -3.07 (1.17) (-5.42, -0.82) -2.17 (1.88) (-5.92, 1.46)

PP 2815.97 0.29 (0.77) (-1.16, 1.86) -0.36 (0.96) (-2.27, 1.48) -0.72 (0.81) (-2.30, 0.86) -3.04 (1.20) (-5.47, -0.78) -2.19 (1.87) (-5.86, 1.40)

Gen-straPP 2816.06 0.72 (0.98) (-1.26, 2.57) -0.89 (1.17) (-3.17, 1.42) -1.40 (1.08) (-3.47, 0.77) -3.77 (1.20) (-6.14, -1.45) -1.53 (1.64) (-4.55, 1.96)

UIP 2816.56 0.85 (0.98) (-1.08, 2.79) -1.18 (1.24) (-3.60, 1.27) -1.69 (1.10) (-3.81, 0.50) -4.69 (1.32) (-7.19, -2.00) -2.23 (2.12) (-6.40, 1.91)

COM 2817.45 0.45 (0.84) (-1.16, 2.14) -0.47 (0.99) (-2.43, 1.44) -0.48 (0.93) (-2.39, 1.21) -2.35 (1.25) (-4.79, 0.03) -1.53 (1.37) (-4.31, 1.07)

straPP, scale transformed power prior; APP, asymptotic power prior; PP, power prior; Gen-straPP, generalized scale transformed power prior; UIP, uniform

improper prior; COM, commensurate prior.

Gen-straPP was run with ω0 = 0.1.

57 / 74



Table 4: Posterior Estimates when a0 = 0.1

eCare Plan History of Stroke Minor NIHSS Moderate-Severe NIHSS Non-white

Model DIC Mean (SD) 95%HPD Mean (SD) 95%HPD Mean (SD) 95%HPD Mean (SD) 95%HPD Mean (SD) 95%HPD

straPP 2815.23 0.69 (0.95) (-1.16, 2.55) -0.93 (1.16) (-3.29, 1.26) -1.42 (1.07) (-3.53, 0.65) -3.78 (1.08) (-5.89, -1.66) -1.55 (1.56) (-4.23, 1.70)

APP 2815.85 0.28 (0.77) (-1.21, 1.79) -0.37 (0.96) (-2.23, 1.56) -0.73 (0.80) (-2.31, 0.83) -3.07 (1.17) (-5.42, -0.82) -2.17 (1.88) (-5.92, 1.46)

PP 2815.97 0.29 (0.77) (-1.16, 1.86) -0.36 (0.96) (-2.27, 1.48) -0.72 (0.81) (-2.30, 0.86) -3.04 (1.20) (-5.47, -0.78) -2.19 (1.87) (-5.86, 1.40)

Gen-straPP 2816.06 0.72 (0.98) (-1.26, 2.57) -0.89 (1.17) (-3.17, 1.42) -1.40 (1.08) (-3.47, 0.77) -3.77 (1.20) (-6.14, -1.45) -1.53 (1.64) (-4.55, 1.96)

UIP 2816.56 0.85 (0.98) (-1.08, 2.79) -1.18 (1.24) (-3.60, 1.27) -1.69 (1.10) (-3.81, 0.50) -4.69 (1.32) (-7.19, -2.00) -2.23 (2.12) (-6.40, 1.91)

COM 2817.45 0.45 (0.84) (-1.16, 2.14) -0.47 (0.99) (-2.43, 1.44) -0.48 (0.93) (-2.39, 1.21) -2.35 (1.25) (-4.79, 0.03) -1.53 (1.37) (-4.31, 1.07)

straPP, scale transformed power prior; APP, asymptotic power prior; PP, power prior; Gen-straPP, generalized scale transformed power prior; UIP, uniform

improper prior; COM, commensurate prior.
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improper prior; COM, commensurate prior.
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Posterior Distribution of the straPP

The straPP as developed on slides 12-15 can be written as,

πs(θ | D0, a0) ∝ L(η | D0)
a0π0(η)

∣∣∣∣dηdθ
∣∣∣∣ I [η = g (θ)] , (14)

where I [A] is an indicator that A is true, and η is calculated by solving

I
1/2
0 (η)η = I

1/2
1 (θ)θ. (15)
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Posterior Distribution of the straPP

When neither information matrix is free of the parameter, it is still possible
to analyze data using the straPP by considering a posterior representation
involving both η and θ, and using a Metropolis-Hastings sampling
algorithm where proposed values of η and θ satisfy the constraint in
Equation (15).
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Algorithm for Sampling Posterior Distribution of the
straPP

Let t denote the current sample. We propose the following algorithm for
sampling the posterior distribution of the straPP.

1 Propose θ(t) ∼ N
(
θ | θ(t−1), Σ̂

)
, where Σ̂ is the maximum likelihood

estimate (MLE) for the new data analysis.

2 Compute c(θ(t)) = I
1/2
1 (θ(t))θ(t)

3 Solve for η(t) in I
1/2
0 (η(t))η(t) = c(θ(t)), via a nonlinear programming

(NLP) solver in SAS or R.

4 Perform a Metropolis-Hastings step based on the proposal value on(
η(t),θ(t)

)
.
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The Scale Transformed Power Prior for
Survival Data
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straPP for Survival Data

• We allow the historical and current data set to be a GLM or a survival
model

πs(θ|D0) ∝ L(g(θ)|D0)
a0π0(g(θ))

∣∣∣∣dg(θ)

dθ

∣∣∣∣ (16)

where θ = (φ,β,λ).

• φ is the dispersion parameter
• β is vector of regression parameters
• λ is vector of baseline hazard parameters

• Here we propose that the current data is survival data, and that we
do not wish to borrow from the historical dispersion parameter or
current baseline hazard parameters
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Piecewise Exponential Model

• We construct a finite partition of the time axis,
0 < s1 < s2 < . . . < sJ ,with sJ > yi for all i = 1, 2, . . . , n.

• In the jth interval, assume a constant baseline hazard h0(y) = λj for
y ∈ Ij = (sj−1, sj ].

• Let D = (n,y,X, ν) denote the observed data, where
y = (y1, y2, . . . , yn)′, ν = (ν1, ν2, . . . , νn)′.

• νi = 1 if the ith subject failed and 0 otherwise

We can write the likelihood function of (β,λ) for the n subjects as

L(β,λ|D) =

n∏
i=1

J∏
j=1

(
λj exp(x′iβ)

)δijνi exp

{
− δij

[
λj(yi − sj−1)

+

j−1∑
g=1

λg(sg − sg−1)

]
exp(x′iβ)

}
, (17)
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Proposed straPP for Survival Data

• For the piecewise exponential model, the information matrix of the
current data does not depend on the regression or baseline hazard
parameters, therefore we can solve for η = g1(β, φ) = A(β, φ)β.

• An attractive computational form of the partial-borrowing straPP is
given by

π(φ,β,λ|D0) = πs(φ,β|D0)π(λ)

∝ L(φ, g1(β, φ)|λ, D0)
a0π0(g1(β, φ))

×
∣∣∣∣dg1(β, φ)

dβ

∣∣∣∣π(φ)π(λ), (18)

where L(·|D0) is the historical data likelihood.
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Study Design based on the Scale
Transformed Power Prior
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Motivation

• The Prescription Drug User Fee Amendments of 2017 (PDUFA VI)
and the 21st Century Cures Act contain provisions to make the use of
complex innovative trial designs (CID) easier

• In 2018, the FDA launched a pilot program to incorporate the use of
CID (CDER 2018)

• Goals:
• maximize clinical trial efficiency
• apply innovative approaches where traditional methods may not be

feasible
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Bayesian Clinical Trial Design

• Chen et al. (2011) developed a Bayesian approach to sample size
determination (SSD) in noninferiority clinical trials - partial-borrowing
power prior and normalized power prior

• Found that in using historical data, the sample size needed for the
current study was reduced from 1480 to 1080 subjects for a type I
error rate of 0.05 and 80% power

• However, the study found that the approach works best when the
historical and current data are compatible.
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straPP for Clinical Trial Design

• We propose to use the straPP to develop a new Bayesian sample size
determination (SSD) procedure.

• We believe that by using the straPP to develop a new Bayesian SSD
procedure, we can reduce the sample size while maintaining type I
error rate and power.

• The straPP is able to account for the incompatibility of the historical
and current data in terms of different data types.
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