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Abstract
For clinical trial design and analysis, there has been extensive work related to using
joint models for longitudinal and time-to-event data without a cure fraction (i.e., when
all patients are at risk for the event of interest), but comparatively little treatment has
been given to design and analysis of clinical trials using joint models that incorporate
a cure fraction. In this paper, we develop a Bayesian clinical trial design methodol-
ogy focused on evaluating the treatment’s effect on a time-to-event endpoint using a
promotion time cure rate model, where the longitudinal process is incorporated into
the hazard model for the promotion times. A piecewise linear hazard model for the
period after assessment of the longitudinal measure ends is proposed as an alternative
to extrapolating the longitudinal trajectory. This may be advantageous in scenarios
where the period of time from the end of longitudinal measurements until the end
of observation is substantial. Inference for the time-to-event endpoint is based on a
novel estimand which combines the treatment’s effect on the probability of cure and
its effect on the promotion time distribution, mediated by the longitudinal outcome.
We propose an approach for sample size determination such that the design has a
high power and a well-controlled type I error rate with both operating characteristics
defined from a Bayesian perspective. We demonstrate the methodology by designing
a breast cancer clinical trial with a primary time-to-event endpoint where longitudinal
outcomes are measured periodically during follow up.
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1 Introduction

In clinical trials with time-to-event endpoints, it is often observed that some propor-
tion of patients never experience the event of interest or the event will not occur for
an exceedingly long period. These patients are considered cured from disease. For
example, a radiation therapy can cure patients if it kills all the tumor cells (Withers
et al. 1995). In such cases patients will have indefinite relapse-free survival (RFS),
i.e., an indefinite period with no signs or symptoms of the cancer. The proportion of
cured patients is referred to as the cure rate or cure fraction. Survival models accom-
modating a cure fraction, known as cure rate models, have been developed for this
setting. A mixture cure rate model was proposed by Berkson and Gage (1952), which
assumed a certain fraction of the population is cured. Farewell (1982) used a binary
distribution to model the cure probability and a parametric failure time distribution
to model the event times. Chen et al. (1999) developed a parametric promotion time
cure rate model with a proportional hazards structure. A semiparametric extension
was developed by Chen et al. (2002).

The cure rate model has been used to study time-to-event data for various types
of cancers, including breast cancer (Woods et al. 2009), leukemia (Tsodikov et al.
1998) and melanoma (Kirkwood et al. 2000). In such trials, outcomes associated with
the time-to-event, such as quality of life (QOL) scores or immune response measures
(e.g., CD4 counts), are often measured intermittently at potentially different times
with a potentially different number of measurements for each patient (Wulfsohn and
Tsiatis 1997). The use of joint models for clinical trials with longitudinal and time-
to-event data has then become popular. See for example work of De Gruttola and
Tu (1994), Wulfsohn and Tsiatis (1997), Xu and Zeger (2001) and Chi and Ibrahim
(2006). There are relatively few approaches to study longitudinal and time-to-event
data in the presence of a cure fraction. Brown and Ibrahim (2003) developed a joint
cure rate model based on a mixture distribution with a point mass at zero for cases
where the longitudinal outcome has an excess of zeros (e.g., in cases where some
participants exhibit no immune response to an immunotherapy). Chen et al. (2004)
also proposed a joint cure rate model in the context of a cancer vaccine study that
allows for incorporating multiple longitudinal markers. Kim et al. (2013) proposed a
class of transformed promotion time cure models to account for long-term plateaus
and conducted inference based on nonparametric maximum likelihood estimation.
However, all approaches mentioned above were developed for analysis, with virtually
no treatment given to how such models could be used for clinical trial design.

In this paper, we develop a Bayesian design framework using a joint cure rate model
for clinical trials involving longitudinal and time-to-event data in a general context.
For ease of exposition, we focus on the design of a parallel two-group randomized,
controlled trial. We assume the primary endpoint is a time-to-event endpoint (e.g.,
relapse-free survival) and that a single, continuous longitudinal outcome (e.g., quality
of life) is measured repeatedly during the follow up period, and that it potentially
provides predictive or prognostic information about the time-to-event endpoint. We
propose the use of a piecewise linear time trajectory that incorporates patient-specific
random effects to account for patient-level heterogeneity which impacts the longitu-
dinal outcome distribution and the distribution for the promotion times (i.e., the event
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times for those uncured). The proposed joint cure rate model allows the treatment
to have effects on both the probability of cure and the promotion time distribution,
where the effect on the promotion time distribution is characterized by the treatment’s
effect on the longitudinal outcome and the longitudinal outcome’s effect on the pro-
motion times. After collection of longitudinal measures ceases, the trajectory is often
assumed to maintain its functional form and is therefore extrapolated until the end
of follow-up, which may sometimes be problematic. Conditional on the promotion
time hazard at the time at which the measurement of longitudinal outcomes ends, we
develop a method to model the hazard as a piecewise linear function of time so that the
overall hazard model can accommodate potential changes in the trajectory function
after the end of longitudinal assessment (i.e., for the period over which there is no data
to directly estimate it). This approach provides added robustness for analysis of the
clinical trial data even if a simplified model (i.e., one with extrapolation) is used for
sample size determination.

We develop a simulation-based approach whereby one can identify the necessary
sample size required to obtain a desired level of Bayesian power while controlling
a Bayesian type I error rate. Bayesian (i.e., average) type I error rate and power
are defined with respect to sampling prior distributions which are based on the null
and alternative hypotheses, respectively (Psioda and Ibrahim 2018, 2019). For the
special case where the sampling priors place a point-mass on a fixed value of the
model parameters, which is our focus in this paper, the Bayesian type I error rate
and power for a design closely align with the frequentist versions. We evaluate the
operating characteristics of designs based on the proposed joint cure rate model, a
semiparametric cure rate model, and a joint model without a cure fraction.

The rest of this paper is organized as follows: In Sect. 2, we introduce a joint
cure rate model, construct the superiority hypothesis test, and discuss the use of an
approach that avoids extrapolation of the trajectory function after the measurement of
longitudinal outcomes ends. We also develop the study design and Bayesian sample
size determination strategy. In Sect. 3, we provide a simulation study comparing the
Bayesian design based on the proposed joint cure rate model to designs based on a
semiparametric cure rate model and a joint model without a cure fraction. We close
the paper with some discussion in Sect. 4.

2 Method

2.1 Joint Cure Rate Models

Let yi (t) be the longitudinal outcome at time t for patient i where yi (t) = μi (t)+εi (t)
with εi (t) ∼ N (0, σ 2). We refer to the conditional expectation of yi (t), denoted by
μi (t), as the longitudinal process and consider a design model based on a trajectory
function given as follows:

μi (t) = E[yi (t)|θ i ] = g(t)T θ i + X i (t)γ

= g(t)T θ i + g(t)T γ t + xi g(t)T γ x + zTi γ z, (1)
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where g(t) is a function of time t , θ i ∼ N (0,Σθ ) is a mean zero random effect
with positive definite covariance matrix Σθ , X i (t) = [g(t)T , xi g(t)T , zTi ] represents
the covariate process with treatment indicator xi and baseline covariate vector zi ,
and γ = [

γ t , γ x , γ z

]
is a vector of regression coefficients with γ t , γ x , and γ z

corresponding to g(t), xi g(t), and zi , respectively. On the basis of randomization and
assuming that the longitudinal measurement at time t = 0 is pre-treatment, the main
treatment effect can be set to 0 and excluded from the model. In our development, we
keep the main effect simply for ease of exposition. More details about the trajectory
function and the importance of including an interaction termbetween the time covariate
and treatment indicator can be found in Xu et al. (2020).

Using similar notation as in Ibrahim et al. (2001), for the i th patient, let Ni be the
unobserved number of metastasis competent tumor cells which follows a Poisson dis-
tribution with mean ηi . Define Pi j , j = 1, . . . , Ni to be the time to tumor progression
(i.e., time to a detectable tumor arising from the individual cell) for the j th metastasis
competent cell in the i th patient. The Pi j are referred as promotion times. Conditional
on Ni , the Pi j are assumed to be independent and follow a model with hazard λi (t)
and corresponding distribution function Fi (t) = 1 − Si (t). The time to an event is
then defined as Yi = min{Pi j , 0 ≤ j ≤ Ni } with P(Pi0 = ∞) = 1. The marginal
probability of survival past time y for the i th patient is given as

Sip(y) = P(Ni = 0) + P(Yi > y|Ni ≥ 1)P(Ni ≥ 1)

= exp(−ηi ) +
∞∑

k=1

Si (y)
k e

−ηi ηki

k!
= exp(−ηi + ηi Si (y)). (2)

Since Sip(∞) ≡ P(Ni = 0) = exp(−ηi ) �= 0, (2) is not a proper survival function.
Theprobability of survival beyond time y for an uncured individual is givenby S∗

i (y) =
P(Yi > y|Ni ≥ 1) = Sip(y)−exp(−ηi )

1−exp(−ηi )
, which is a proper survival function. Model

(2) can be rewritten as Sip(y) = exp(−ηi ) + {1 − exp(−ηi )}S∗
i (y) and therefore

it is related to the standard mixture cure rate model (Berkson and Gage 1952). The
sub-density and sub-hazard function for the i th patient take the forms of fip(y) =
ηi fi (y) exp(−ηi Fi (y)) and hip(y) = ηi fi (y), respectively.

Because treatmentmaywork on the tumor cells either to eliminate themor to prevent
their proliferation, as described in Brown and Ibrahim (2003), we model the treatment
effect as occurring through two possible mechanisms: (i) impacting the number of
metastasis competent tumor cells and (ii) impacting the promotion time distribution
for those cells. For mechanism (i), we propose a hazard model given by

log λi (t) = log λ0(t) + β
{
g(t)T θ i + g(t)T γ t + xi g(t)T γ x

}
(3)

with the corresponding cure faction model given by

ηi = exp{ψx xi + ψz zi }, (4)
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where ψ = {ψx , ψz} are effects of the treatment and baseline covariates on the prob-
ability of cure. For mechanism (ii), we propose a hazard model given by

log λi (t) = log λ0(t) + β
{
g(t)T θ i + g(t)T γ t + xi g(t)T γ x

}
+ αx xi + αz zi (5)

with the corresponding cure faction model given by

ηi = η0, (6)

where α = {αx , αz} are analogous to the direct effect of the treatment and baseline
covariates as defined in Xu et al. (2020) for joint models without a cure faction. For
both mechanistic models, β is an association parameter that controls the influence of
the longitudinal process on the promotion time hazard and λ = (λ01, . . . , λ0K )T is a
K -component piecewise constant baseline hazard associated with a fixed partition of
the time axis. The effects of treatment and baseline covariates are included as “main”
effects in either the hazard model or cure fraction model but not in both. Extensive
simulation studies (data not shown) support that these two effects are only weakly
identifiable relative to one another, and thus it is not necessary to model both.

Let ξ = (ψ, α, η0, γ ,λ, β,Σθ ) denote the complete set of fixed effect parameters
and let θ = (θ1, . . . , θn) denote the collection of random effect vectors for the set of
n patients enrolled in the trial. We denote the observed data for the complete set of n
patients byD. Suppose patient i = 1, . . . , n has the longitudinal outcomemeasuredmi

times, denotedby ti1, . . . , timi . Let yi j = yi (ti j ) andXi j = X i (ti j )denote the observed
longitudinal outcome and covariate process at time ti j , respectively, for j = 1, . . . ,mi .
Define N = (N1, N2, . . . , Nn), the complete data likelihood L(ξ , θ , N|D) is written
as

L(ξ , θ , N|D) =
n∏

i=1

⎡

⎣
mi∏

j=1

fL(yi j |Xi j , θ i , γ , σ 2)

⎤

⎦ fS(ti , vi , Ni |xi , zi , θ i , ξ) fθ (θ i |Σθ),

where fL(·) and fθ (·) are the distributions of longitudinal outcomes and the random
effects, respectively. The joint distribution fS(·) for the observation time and number
of metastasis competent tumor cells has the form

fS(ti , vi , Ni |xi , zi , θ i , ξ) = Si (ti )
Ni−vi {Ni fi (ti )}vi e

−ηi η
Ni
i

Ni ! ,

where ti is the observation time and vi is an indicator for whether an event is observed
for the i th patient. We can obtain the likelihood L(ξ , θ |D) by summing over the latent
Ni ,

L(ξ , θ |D) =
n∏

i=1

⎡

⎣
mi∏

j=1

fL(yi j |Xi j , θ i , γ , σ 2)

⎤

⎦ fS(ti , vi |xi , zi , θ i , ξ) fθ (θ i |Σθ)
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with the density function

fS(ti , δi |xi , zi , θ i , ξ) = {ηi fi (ti )}vi exp{−ηi Fi (ti )}.

Further integrating over the random effects θ i for i = 1, . . . , n gives the observed
data likelihood

L(ξ |D) =
n∏

i=1

∫

θi

⎡

⎣
mi∏

j=1

fL(yi j |Xi j , θ i , γ , σ 2)

⎤

⎦ fS(ti , vi |xi , zi , θ i , ξ) fθ (θ i |Σθ)dθi

=
n∏

i=1

∫

θi

⎡

⎣
mi∏

j=1

1√
2πσ

e
1

2σ2
(yi j−μi j )

2

⎤

⎦ {ηi e− ∫
λi (s)dsλi (ti )}vi

exp{−ηi (1 − e− ∫
λi (s)ds)} fθ (θ i |Σθ)dθi

where μi j and λi (·) are defined in (1) and (3), respectively. Since μi j , λi (·) and fθ (·)
all include random effects, the observed data likelihood does not exist in closed form.

2.2 Piecewise Linear Time Trajectory Function

For the longitudinal process, a common practice is to take g(t) to be a polynomial
vector (Chen et al. 2011; Crowther et al. 2013). For our approach, following Xu et al.
(2020), we assume a continuous, semiparametric, piecewise linear time trajectory
function for g(t), which is constructed using a pre-specified number of segments with
specified knots. This approach is advantageous because it allows for a more flexible
shape for the time trajectory (e.g., a trajectory that levels off at some time point).

We assume a piecewise linear trajectory function with M components and M − 1
knots denoted by k = (k1, . . . , kM−1) which satisfy k0 = 0 < k1 < · · · < kM−1 <

kM = ∞. Define theM+1 dimensional vector g(t) to have 1 as its first component and
fm(t) = max {min{t, km} − km−1, 0} as its (m + 1)th component for m = 1, . . . , M
(i.e., g(t)T = [1, f1(t), . . . , fM (t)]). Thus, the first components of θ i , γ t , and γ x
correspond to intercept parameters and the remaining M components of each vector
combine to determine each trajectory’s slope over the M time intervals in the time
axis partition.

2.3 Treatment Effects on the Cure Fraction and Promotion Times

The proposed joint cure rate model allows the treatment to have effects on the proba-
bility of cure and/or the promotion time distribution. For models (3) and (4), we refer
to ψx as the effect on the probability of cure. The effect on the promotion time hazard
is β g(t)T γ x which can be decomposed as the effect of treatment on the longitudinal
outcome g(t)T γ x multiplied by the effect of the longitudinal outcome on the promo-
tion time hazard β. Figure1 provides a simple illustration for how treatment affects
the time-to-event endpoint. There are several possibilities for how the treatment could
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T
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EN

β

ψx

g(
t)
T γ x

N
>
0

Fig. 1 Diagram for the treatment effect on the time-to-event outcome. T = Treatment effect; L = Lon-
gitudinal outcome; E = Time-to-event endpoint; N = Number of metastasis competent tumor cells. The
dashed line reflects a pathway that is only open conditional on N > 0

impact the time-to-event distribution. The treatment could have an effect only on the
probability of cure (ψx �= 0, β g(t)T γ x = 0), only on the promotion time distribution
(ψx = 0, β g(t)T γ x �= 0), or both. The effects in models (5) and (6), however, are
only on the promotion time distribution and are analogous to the direct/indirect effects
defined by Xu et al. (2020). We refer the reader to the paper for more details.

The proposed formulation of the joint cure rate model is ideal for cases where
effects on both the probability of cure and on the promotion time distribution for those
uncured are plausible and it is of interest to design a trial with a goal of identifying
their contribution to the total treatment effect.

2.4 Hypothesis Testing

Weconsider a study designwhere the goal is to demonstrate superiority of an investiga-
tional product to a control with respect to a time-to-event endpoint such as relapse-free
survival (RFS). While it is of interest to estimate the effectiveness of the investiga-
tional product, quantification of effects on both the probability of cure and on the
promotion time distribution for those uncured is also of interest. We assume that the
longitudinal outcome is measured at baseline and follow-up time points scheduled at
regular intervals until some fixed time ttraj. Patients are followed for the time-to-event
endpoint starting at baseline and up to time tmax, which corresponds to a random
point in time when a specified number of events have accrued in the trial or a max-
imum duration for the trial has been reached. Let h1(t) and h0(t) be the promotion
time hazards for comparable patients in the treatment and control groups. Here, com-
parable implies that although the patients receive different treatments, their random
effects and baseline covariate vectors are equal (i.e., h1(t) = log λ(t, x = 1, z) and
h0(t) = log λ(t, x = 0, z), where log λ(t) is defined in (3)).

We define the one-sided null and alternative hypotheses for superiority as: H0 :
Δ(t0, ω0) ≥ 1 versus H1 : Δ(t0, ω0) < 1, where Δ(t0, ω0) = {eψx }ω0 · φ(t0)(1−ω0)

for fixed t0 with ttra j ≤ t0 ≤ tmax . Further, eψx is the ratio of the probability of
cure in the control patients compared to a comparable treated group, and φ(t0) =
G−1

(∫ t0
0 G

(
h1(t)
h0(t)

)
Ω(t)dt

)
is the average time-varying hazard ratio of the promotion
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timedistributionwhereG(x) is a strictly increasing function andΩ(t) is a non-negative
weight function such that

∫ t0
0 Ω(t)dt = 1. Under models (5) and (6), we have ψx = 0

and so logicallyω0 = 0 so thatΔ(t0, ω0) = φ(t0). For models (3) and (4),Δ(t0, ω0) is
aweighted function of treatment effects on the probability of cure and on the promotion
time distribution with ω0 prespecified between 0 and 1, where taking ω0 = 1 results
in a test of the treatment effect on the probability of cure and taking ω0 = 0 results
in a test of the effect on the promotion times. If one believes the treatment has impact
only on the promotion times, ω0 can be taken close to 0; if treatment affects only the
probability of cure, ω0 should be close to 1. We suggest a default value as ω0 = 0.5
which results in an estimand that weights the ratio for the probability of cure and the
average time-varying hazard ratio equally. More details and discussion about how to
choose a value of ω0 can be found in Appendix A of the Supplementary Materials. For
the time-varying hazard ratio φ(t0), we take G(x) = log(x) and Ω(t) ∝ |β g(t)T γ x |,
where β g(t)T γ x can be viewed as the difference in log hazards for two comparable
patients. More details on this choice of weight function can be found in Xu et al.
(2020). In addition to the specific choices for G(x) and Ω(t) discussed above, one
can approximate φ(t0) for arbitrary choices using a trapezoidal approximation to the
integral. We refer the reader to Xu et al. (2020) for more details.

2.5 Avoiding Extrapolation of the Longitudinal Process

In use of joint models, it is often assumed that the longitudinal process maintains
the same trajectory functional form after collection of the longitudinal measurements
ceases (i.e., a linear trajectory continues to hold). In such cases, the trajectory is
effectively extrapolated from the point of the last measurement of the longitudinal
outcome until the observation period ends, which may sometimes be problematic. In
an ideal setting, longitudinal outcomes will be collected over the period [0, t0], which
avoids extrapolation altogether. However, this solution may not be practical in all
settings. Thus, we propose an approach to avoid extrapolation which can be used for
analysis of the trial data even if simplified models that use extrapolation are assumed
for the purposes of sample size determination.

Similar to the piecewise linear time trajectory function proposed in Sect. 2.2, for
the promotion time hazard after the end of longitudinal measurements, we propose
a model for the hazard that has a piecewise linear form conditional on the patient-
specific hazard at the assessment end time ttra j . The promotion time hazard model
after ttra j takes the form

log hi (t) = log λi (ttra j ) + b(t)T ρt + xi b(t)T ρx , (7)

where t > ttra j and b(·) is equal to g(·) but excluding the intercept. One can see that
hazardmodels (3) and (5) are special cases ofmodel (7) where ρt = β ·γ t , ρx = β ·γ x
and λ0(t) = λi (ttra j ). Note that the log hazard at time ttra j for an individual implicitly
takes into account the value of their random effects. We compare the proposed joint
cure rate model with and without extrapolation in Sect. 3.2 to show the robustness of
the proposed approach.
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2.6 Model Estimation and Posterior Inference

Using the observed data likelihood L(ξ |D), the posterior distribution for the fixed
effects takes the form π(ξ |D) ∝ L(ξ |D)π( f )(ξ), where π( f )(ξ) is the fitting prior
(Wang and Gelfand 2002). However, as discussed in Sect. 2.1, the observed data like-
lihood L(ξ |D) cannot be computed in closed form. Nonetheless, it is straightforward
to use Markov chain Monte Carlo (MCMC) methods to sample from π(ξ, θ |D) based
on the likelihood L(ξ , θ |D) and use the samples of ξ to approximateπ(ξ |D). However,
because of the substantial computational burden of usingMCMC for large scale simu-
lations, we consider a posterior approximation for inference during design simulations.
We use standard software (e.g., the NLMIXED procedure) to obtain an asymptotic
posterior approximation forπ(ξ |D) based on the Bayesian central limit theorem (Chen
1985). Specifically, π(ξ |D) ≈ Normal(ξ̂ , Σ̂ξ ), where ξ̂ and Σ̂ξ , respectively, are the
maximum likelihood estimator (MLE) and approximate asymptotic covariance for the
MLE, obtained by maximizing the approximate observed data likelihood obtained by
integrating over the θ i using Gaussian Quadrature. Application of the delta method
(Doob 1935) yields an approximate posterior for π(Δ(t0, ω0)|D) ≈ Normal(Δ̂, σ̂ 2

Δ),
where Δ̂ and σ̂ 2

Δ are the maximum likelihood estimator and estimated asymptotic vari-

ance of Δ(t0, ω0), respectively. It follows that P(Δ(t0, ω0) < 1|D) ≈ 1− Φ
(

Δ̂−1
σ̂Δ

)
.

2.7 Bayesian Sample Size Determination

The proposed method is designed to identify the smallest sample size required for a
trial, subject to Bayesian type I error rate and power requirements. Following Psioda
and Ibrahim (2018, 2019), we define the Bayesian type I error rate and power using
user-specified null and alternative sampling prior distributions for ξ , respectively. The
null sampling prior gives non-zero weight to values of ξ such that Δ(t0, ω0) ≥ 1 and
the alternative sampling prior such that Δ(t0, ω0) < 1. In this paper, we only consider
point-mass sampling priors such that π(s)

0 (ξ) = 1(ξ = ξ0) and π
(s)
1 (ξ) = 1(ξ = ξ1),

where 1{A} is an indicator that A is true. When applying the point-mass sampling
priors, the Bayesian type I error rate and power closely align with the frequentist
versions.

Let α(s) and β(s) denote the Bayesian type I and II error rates. Prespecify p0
as the threshold for substantial evidence such that we reject the null hypothesis if
P(Δ(t0, ω0) < 1|D) ≥ p0. For a fixed value of ξ , the null hypothesis rejection rate
is defined as r(ξ) = E[1{P(Δ(t0, ω0) < 1|D) ≥ p0}|ξ ]. The Bayesian type I error
rate and power are defined as α(s) = E[r(ξ)|π(s)

0 ] and 1 − β(s) = E[r(ξ)|π(s)
1 ],

which are weighted averages of r(ξ) with weights determined by π
(s)
0 (ξ) and π

(s)
1 (ξ),

respectively.

2.8 Simulation Based Sample Size Determination

We use simulations to identify the required sample size such that the design has
sufficiently highBayesianpower.Thenumber of patients enrolled in the trial are chosen
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to obtain a specified number of events in a specified interval of time on average. Let the
sample size and number of events be given by n and v, respectively. FollowingXu et al.
(2020), we consider an approach that fixes the ratio r = n

v
but varies the number of

events. If n1 patients result in obtaining v1 events in a specific time frame, then to obtain
v2 ≥ v1 events in the same time frame, one should increase n2 proportionally. The trial
duration tmax must be taken to be large enough so that there is a high probability that
the observed data will allow for estimation of the location of the plateau in the survival
curves. As such, taking n to be very large, even if cost feasible, is disadvantageous. In
our simulations, n was chosen as described above.

We want to determine the smallest v such that the Bayesian power for the design
is at least 1 − β(s). A simulation-based sample size determination procedure is given
below:

S1. Let v1, . . . , vK denote the ordered potential event totals at which the trial might
be stopped.

S2. Initialize k = 1.
S3. Compute the Bayesian power 1 − β

(s)
k based on vk .

S4. If 1−β
(s)
k ≥ 1−β(s) then set v = vk and stop; otherwise, increment k and return

to S3.

Under point-mass null sampling priors along with a non-informative fitting prior,
by taking p0 = 1 − α(s), the Bayesian type I error rate will be approximately α(s)

and therefore no specific effort is needed to control the Bayesian type I error rate
at α(s). Nonetheless, one can always compute the exact Bayesian type I error rate
through simulation to ensure it is sufficiently close to the desired nominal level. The
simulations studies presented in Sect. 3 illustrate that the property α(s) ≈ 1 − p0
indeed holds quite well.

We expand step S3 from the algorithm given above. Letting B be the number of
simulation studies to be performed, to estimate the Bayesian power 1−β

(s)
k associated

with event total vk , one does the following:

S3.1. Sample ξ (b) from the alternative sampling prior π
(s)
1 (ξ).

S3.2. Simulate the observed data D(b).
S3.3. Estimate the posterior distribution π(φ(t0)|D) using an approach described in

Sect. 2.6 and compute the null hypothesis rejection indicator

r (b) = 1{P(Δ(t0, ω0) < 1|D(b)) ≥ p0}.

S3.4. Approximate the Bayesian power:

1 − β
(s)
k ≈ 1

B

B∑

b=1

r (b).

The new trial data D(b) can be simulated using the following steps. Let J be the total
number of time points at which the longitudinal outcomewill be measured. Denote the
scheduled time points for longitudinal measurements as m = (m1, . . . ,mJ ). Thus, J
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is the number of outcome measurements that will be obtained for patients who do not
experience an event or drop out of the trial for other reasons. For patient i = 1, . . . , n,
we do the following:

1. Simulate the enrollment time ri using a chosen enrollment distribution.
2. Simulate xi based on a treatment assignment distribution (or rule) and zi based on

the covariate distribution.
3. Simulate θ i from N (0,Σθ ) and εi j from N (0, σ 2) for j = 1, . . . , J .
4. Compute yi j = μi (ti j ) + εi j .
5. Compute ηi = exp(xiψx + zTi ψz) (or ηi = η0) and simulate Ni from Poisson(ηi ).
6. Simulate Pi j ∼ F(t) independently for j = 1, . . . , Ni and compute yi =

min{Pi j , j = 0, . . . , Ni } with Pi0 = tmax .
7. Simulate the time-to-censorship ci based on the chosen censorship distribution.
8. Set si = min(yi , ci ) and δi = I (yi ≤ ci ).

For patient i = 1, . . . , n,

1. Remove any patient with ri ≥ tmax (Patients whose simulated enrollment time
occurs after the study terminates).

2. Remove any longitudinal outcome yi j occurring after time ri + si .

3 Example Application: Bayesian Clinical Design for Breast Cancer

Our design methodology is motivated by a breast cancer trial undertaken by the Inter-
national Breast Cancer Study Group (IBCSG) (IBCSG 1996). The trial, IBCSG Trial
VI, was conducted in pre-menopausal women with node-positive breast cancer to
investigate the efficacy of different durations of adjuvant chemotherapy (3 vs 6 cycles
of CMF – cyclophosphamide, methotrexate, and fluorouracil) and whether reintroduc-
tion of CMF provided added benefit. Treatment strategies were evaluated with respect
to the overall survival and relapse-free survival endpoints. During the study, four mea-
sures of quality of life (appetite, mood, coping, physical well-being) were scheduled
to be collected at baseline and every three months for up to two years (Hürny et al.
1992).

For our example application, we design a similar trial evaluating two treatments
(e.g., whether or not chemotherapy was reintroduced) with respect to a primary RFS
time-to-event endpoint. Here as in IBCSG (1996), RFS is defined as the time to either
cancer-recurrence or death, whichever occurred first. We consider one quality of life
measure (e.g., coping score) in our example. Similar to IBCSG Trial VI, we assume
quality of life scores are collected every 3 months starting at baseline for up to 2 years,
and the scores are approximately normally distributed (after appropriate transforma-
tion, e.g., a square root transformation as was done in Zhang et al. (2016)). We fix
tmax based on the time when the plateau is expected to occur based on prior studies
(Psioda and Ibrahim 2018). The IBCSG trial followed patients for up to 14 years and
the RFS curve plateaued after approximately 11 years. Hence our simulations were
constructed by limiting the number of patients enrolled so that the number with follow-
up at least as long as is expected to see the survival curve plateau was non-negligible.
In the simulated trials, patients were randomized to the two treatments using a 1:1
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allocation scheme. Patient accrual was simulated to be uniform over a 1 year period
and censoring (i.e., dropout) was assumed to follow a mixture distribution whereby
patients had a 0.05 probability of dropping out of the trial and, conditional on being a
dropout, the time to dropout was simulated to be uniform over the duration. In IBCSG
Trial VI, the number of positive lymph nodes identified for lymphadenectomy was
prognostic of survival and so we included a binary covariate (> 3 vs≤ 3 nodes) in our
hypothetical trial simulations. The covariate was simulated such that approximately
50% of the patients were in the more severe group.

We assumed the longitudinal process for the ith patient is given by μi (t) = θi +
g(t)T γ t + xi g(t)T γ x +γz zi , where zi is an indicator that the patient had> 3 positive
lymph nodes. We considered a four-component piecewise linear trajectory function
with knots at 0.25, 0.75, and 1.25 years. For the promotion time hazard, we simulated
data using models (3) and (4) because the treatment (i.e, chemotherapy) is expected to
eliminate the metastasis competent tumor cells. A five-component piecewise constant
function was assumed for the baseline hazard with knots at times 2.00, 2.82, 3.82,
and 5.60 years. Knot placement was determined fitting the proposed joint cure rate
model to the IBCSG data such that each time interval of the trajectory function and
promotion time hazard had approximately the same number of events, respectively.

For the construction ofΔ(t0, ω0), we took ω0 = 0.5, which is our proposed default
choice and t0 = 14 equal to the approximate expected duration of the trial. We consid-
ered various samplingpriors for the treatment effects and the association parameter. For
the association parameter, we considered point-mass priors with β ∈ {−0.15,−0.3}.
For the treatment effect on theprobability of cure,we consideredpoint-mass priorswith
ψx ∈ {0.0,−0.2}. Because of the randomized nature of the trial, we only considered
γx,0 = 0.0. For the treatment effect on the longitudinal process, we considered point-
mass priors on the four slope parameters

{
γx,1, . . . , γx,4

}
including {0.0, 0.0, 0.0, 0.0}

(no effect), {0.2, 0.2, 0.2, 0.2} (increasing treatment effect), and {0.4, 0.3, 0.2, 0.1}
(benefit but decreasing effectiveness over time). The nuisance parameter values were
taken to equal the approximate posterior modes based on our analysis of the IBCSG
data as shown in Appendix B of the Supplementary Materials. To identify the desired
number of events required to achieve Bayesian power equal to 0.8, we considered
v = 150 to 300 in increments of 25. The sample size was chosen such that a non-
negligible fraction of patients were observed through the period where the plateau is
expected. A total of 4000 simulated trials were performed to estimate the operating
characteristics for each choice of sampling prior and each sample size considered.
Table 2 includes the parameter labels used in this paper, as well as their descriptions.
The values for parameters in the second half (starting with σ ) can be chosen based on
estimates obtained by fitting the proposed models to available data if possible (e.g.,
IBCSG study data in our case).

We evaluated the performance of the proposed joint cure ratemodel (JCRM) against
a semiparametric cure rate model and a joint model without a cure fraction. We con-
sidered two types of scenarios: one where the trajectory in the longitudinal process
did not change its functional form after the measurement of the longitudinal outcome
ended and another where the trajectory changed its functional form after the assess-
ment ended. Section3.1 evaluates the performance of the JCRM when the trajectory
maintains its functional form. Section3.2 demonstrates the robustness afforded by the
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Fig. 2 Estimated type I error and power curves when the treatment effect ψx = 0

procedure described in Sect. 2.5 to avoid extrapolating the trajectory when in fact it
does change its functional form after the longitudinal outcome ceases to be measured.

In Appendix D of the Supplementary Materials, we also evaluated the performance
of the proposed JCRM in the scenario where the cure rate is zero (i.e., when the joint
model without cure is the correct model). A comparison of the estimated Bayesian
type I error and power between the JCRM and the joint model without a cure fraction
shows the implementation of JCRM is robust to this type of model misspecification.

3.1 Evaluation of the JCRMWhen the Trajectory Maintains its Functional Form

In this section, we evaluate the performance of the JCRM against a semiparametric
cure rate model and a joint model without a cure fraction. The knot placement for the
semiparametric cure rate model and the joint model without a cure fraction is the same
as proposed for the JCRM. The estimated type I error rate and power curves based
on different approaches are shown in Figs. 2 through 4. Figures2 and 3 compare the
performance of the JCRM to the semiparametric cure rate model. Figure2 presents
the estimated type I error and power curves when there is no treatment effect on the
probability of cure (i.e., ψx = 0). Figure3 presents the estimated power curves when
there is only an effect on the probability of cure (column 1) and are effects on both
the probability of cure and the promotion time distribution (columns 2 and 3).

Both approaches haveBayesian type I error controlled at approximately the nominal
level (i.e., α(s) = 0.05), regardless of the strength of the association parameter (Fig. 2,
column 1). When treatment impacts only the probability of cure (Fig. 3, column
1), power estimates based on the cure rate model are higher than those based on
the JCRM because the default choice of ω0 = 0.5 results in an estimand giving
a significant amount of weight to a null effect. If the treatment only has an affect
on the probability of cure, it is reasonable to fit a cure rate model. However, fitting
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Fig. 3 Estimated power curves when the treatment effect ψx = −0.2

Table 1 Power estimates based on different values of ω0

Joint cure rate model Cure rate model
ω0 = 0.5 ω0 = 1.0

β = −0.15 0.290 0.445 0.382

β = −0.30 0.229 0.405 0.333

Number of events v = 200

the proposed JCRM with ω0 = 1 leads to similar or even higher power estimates
compared to the semiparametric cure rate model as shown in Table 1. Columns 2 and
3 in both Figs. 2 and 3 illustrate that designs based on the JCRM have higher power
than those based on the semiparametric cure rate model when there is a moderate or
large treatment effect on the promotion time distribution.

When evaluating the performance of the proposed approach, a natural comparison
is to consider a joint model for longitudinal and time-to-event data but without a
cure fraction. In many cases, the type I error and power estimates based on the joint
model without a cure fraction are similar to those based on the JCRM, such as the
cases in Figs. 2 and 3. However, this is not true for all scenarios. Figure4 presents the
estimated type I error and power curves based on the proposed JCRM, the joint model
without a cure fraction, and the semiparametric cure rate model. The corresponding
average fitted population survival curves based on the JCRM and the average fitted
survival curves based on the joint model without a cure fraction for the two treatment
groups are shown alongside. For scenarios corresponding to the null hypothesis, the
hazard for the treated group is set equal to that of the control group. All curves are
plotted for the severe node group with patient-specific random effects fixed at 0. We
can see that all three approaches provide similar type I error rates with the designs
based on the JCRM having higher power than the other two approaches. To further
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Table 2 User inputs with descriptions

User inputs Description

M Number of linear trajectory components

k = (k1, . . . , kM−1)
∗ Knot placement for linear trajectory

K Number of baseline hazard components

l = (l1, . . . , lK−1) Knot placement for baseline hazard

J Number of longitudinal measures

m = (m1, . . . ,mJ ) Scheduled time points for longitudinal measurement

ρ Dropout probability

ttra j Longitudinal outcome measurement duration

tmax Trial duration

σ Standard deviation of longitudinal measurement error

Σθ Standard deviation of random intercept

γz Coefficient vector for baseline covariates in longitudinal process

γt Coefficient vector for time intervals in longitudinal process

γx Coefficient vector for time and treatment interactions in longitudinal
process

λ Vector of constant baseline hazards

β Association parameter

ψ = (ψx , ψz) Coefficient vector in cure fraction model (treatment group, baseline
covariates)

Note that the partition k1, . . . , kM−1 corresponds to a partition of the entire time axis at least up to time
ttra j . In the case where assessment of the longitudinal trajectory ends prior to the end of follow-up (e.g.,
ttra j < tmax ) and extrapolation is to be avoided, it will be the case that ttra j = k j for some 1 < j < M−1.
In these cases, the trajectory function g(t) will apply prior to time k j and the trajectory function follows
the form b(t) after. This applies to both the data generation process as well as the fitted model, though there
is no requirement that the model for the data generation process is identical to that fit to the data

illustrate instanceswhere the jointmodel without a cure fraction can perform poorly, in
Appendix C of the Supplemental Materials, we compared the JCRM against the joint
model without a cure fraction with both models having an exponential baseline hazard
instead of piecewise constant baseline hazards. The results presented in that appendix
illustrate that, as the joint models become increasingly parametric (e.g., moving from
a piecewise exponential to an exponential baseline hazard) the necessity to model the
cure fraction becomes increasingly important due to a lack of flexiblity afforded by
the joint model without a cure fraction.

3.2 Evaluation of the JCRMWhen the Trajectory Changes its Functional Form

In this section, we investigate the impact of changes in the functional form of the
trajectory after the longitudinal outcome ceases to be measured. We compared the
Bayesian type I error rate and power based on fitting a JCRM with extrapolation of
the trajectory after the longitudinal measurement ends (at time ttra j ) to those based
on a JCRM without extrapolation using the hazard defined in (7). The trials were
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Fig. 4 Estimated type I error and power curves based on the joint cure rate model, the joint model without
a cure fraction and a semiparametric cure rate model

simulated such that the trajectory continued to change its functional form until the end
of follow up, though collection of longitudinal measures to be used for its estimation
ceased at ttra j = 2 years. For the JCRM with extrapolation, both the longitudinal
trajectory and the promotion time hazard functions were constructed based on the
same knots proposed in Sect. 3. For the JCRM without extrapolation, the promotion
time hazard before ttra j was assumed to followmodel (3) with the trajectory having the
same knots as used for the trajectory in the JCRM with extrapolation. After ttra j , the
promotion time hazard was modeled as a three-component piecewise linear function
with pre-specified knots at times 3.50 and 5.00 years. Figures5 and 6 present the
estimated Bayesian type I error and power curves based on fitting both JCRMs. The
corresponding average fitted population survival and population hazard curves for
the two treatment groups are shown alongside. For scenarios corresponding to the
null hypothesis, the hazard for the treated group is set equal to that of the control
group. All curves are plotted for the severe node group with patient-specific random
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effects fixed at 0. The parameter values used to simulate the trials for Fig. 5 were
taken to equal the approximate posterior modes based on fitting the JCRM without
extrapolation to the IBCSG data. The IBCSG trial had the last course of adjuvant
chemotherapy given at month 15 and the hazard appears to spike shortly after the
intervention period before it decreased. We modified the parameter values estimated
from the IBCSG data to exhibit a less extreme spike as well and that scenario is shown
in Fig. 6. Figure5 shows that the type I error rate estimates based on the JCRM with
extrapolation were inflated and the power estimates were lower than those based on
the JCRM without extrapolation when the event number v > 200. From Fig. 6, the
type I error and power estimates based on the JCRMs with and without extrapolation
are nearly identical, but the JCRMwith extrapolation has a population hazard function
that is more poorly estimated compared to the estimated population hazard function
based on the JCRM without extrapolation, which is approximately unbiased for the
“true” curve. In summary, the type I error rate and power are similar for both JCRMs
in many cases, though type I error control is generally better without extrapolation.
Moreover, the JCRMwith extrapolation has notably poorer performance at estimating
the underlying population hazard and survival function.

4 Discussion

In the example application, we used point-mass sampling prior distributions based on
parameter estimates from an analysis of the IBCSG data.More generally, the Bayesian
framework for power and type I error evaluation is applicable for non-degenerate
sampling priors on the parameters. For more extensive discussion on the use of non-
degenerate sampling priors for computing Bayesian power and type I error rates, we
refer the readers to the work of Psioda and Ibrahim (2018, 2019). In a joint modelling
setting, even for point-mass sampling priors, choosing the sampling priors can be
challenging. The authors would refer the readers to the Supplementary Materials of
Xu et al. (2020) for suggestions on how to determine the point-mass null/alternative
sampling priors.

The design methodology developed in the paper is for a single, continuous lon-
gitudinal outcome. It may be extended to two or more longitudinal outcomes, but
the relationships between different longitudinal outcomes and the construction of a
treatment’s working pathway need to be carefully considered. Extending the proposed
framework to allow for multiple types of longitudinal outcomes is a topic for future
research for the authors.

In the proposed joint modelling framework, we included the effects of treatment
and baseline covariates as “main” effects in either the hazard model or cure fraction
model but not in both. Extensive simulation studies (data not shown) confirm that
these two effects are only weakly identifiable relative to one another, and thus it is
problematic to model both. Approaches for modelling treatment effects in both hazard
and cure rate models in the joint model setting is a future topic for the authors.

The baseline hazard in (7) is assumed to be constant over the interval (ttra j , tmax )

but allowed to vary over patients due to the inclusion of random effects. It can be
generalized to incorporate a time-varying baseline hazard (e.g., adding a common
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Fig. 5 Estimated power and type I error curves based on the JCRMs with and without extrapolation
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Fig. 6 Estimated power and type I error curves based on the JCRMs with and without extrapolation
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piecewise constant baseline hazard beyond ttra j ). The generalization is easy to imple-
ment but not considered herein as our primary objective is to explore the possibility
of implementing piecewise linear form of hazard function to avoid extrapolation.

In our development of the hazard model, the random effects are allowed to have
time varying impact through the longitudinal process. In particular, in the case of a
user-specified piecewise linear trajectory, both a random intercept and interval-specific
random slopes may be included in the model though in our examples we only included
a random intercept. In the case of random slopes for the piecewise linear trajectory, it
would be difficult to carry their effect forward in the extrapolation model (other than
allowing them to implicitly determine the subject-specific hazard at time ttra j ). The
effect of the random intercept is implicitly accounted for already.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10985-022-09581-5.
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