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SUMMARY

Joint models for recurrent event and terminating event data are increasingly used for the analysis of clinical
trials. However, few methods have been proposed for designing clinical trials using these models. In this
article, we develop a Bayesian clinical trial design methodology focused on evaluating the effect of an
investigational product (IP) on both recurrent event and terminating event processes considered as multiple
primary endpoints, using a multifrailty joint model. Dependence between the recurrent and terminating
event processes is accounted for using a shared frailty. Inferences for the multiple primary outcomes
are based on posterior model probabilities corresponding to mutually exclusive hypotheses regarding
the benefit of IP with respect to the recurrent and terminating event processes. We propose an approach
for sample size determination to ensure the trial design has a high power and a well-controlled type I
error rate, with both operating characteristics defined from a Bayesian perspective. We also consider a
generalization of the proposed parametric model that uses a nonparametric mixture of Dirichlet processes
to model the frailty distributions and compare its performance to the proposed approach. We demonstrate
the methodology by designing a colorectal cancer clinical trial with a goal of demonstrating that the IP
causes a favorable effect on at least one of the two outcomes but no harm on either.

Keywords: Bayesian design; Clinical trials; Joint frailty models; Multiple endpoints; Recurrent events; Sampling prior.

1. INTRODUCTION

Recurrent event data are increasingly common in clinical trials. For example, studies may follow patients
for new lesions in a metastatic colorectal cancer study (González and others, 2005), platelet transfusion
and bleeding for myelodysplastic syndromes (Chen and others, 2014), or post-stroke hospital readmissions
(Duncan and others, 2017). Designs based on more time-to-event measurements (i.e., recurrent events)
provide greater efficiency and power compared to designs using only one time-to-event endpoint (Chen
and others, 2014). In situations with recurrent events and a terminating event (e.g., death), a patient’s
clinical experience will be characterized by both event processes, and the two processes are generally
dependent on one another. For example, the relapse of a disease could lead to a high risk of death. The
relapse of disease can then be used as a prediction of death risk (Schmoor and others, 2013; Conlon and
others, 2014). Similarly, a terminating event can also preclude the further occurrence of the recurrent
events (Liu and others, 2004). Under such scenarios, the censorship of recurrent events is no longer
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2 J. XU AND OTHERS

noninformative but instead depends on the terminating event (Rondeau and others, 2007). Therefore, it
is imperative to study the recurrent and terminating event processes simultaneously in order to account
for their dependence, as well as to evaluate an investigational product’s (IP’s) effectiveness on both event
processes.

Marginal models and frailty models are the two most commonly used approaches to analyze recurrent
event process in the presence of a terminating event. Marginal models treat the terminating event as the
competing risk for each recurrent event (Li and Lagakos, 1997) or investigate the mean rate function of
recurrence given survival (Cook and Lawless, 1997). Ghosh and Lin (2000) developed a nonparametric
estimation method based on the marginal mean of the cumulative recurrent event number, and the two
events were connected through a linear combination of their weighted log-rank statistics. They also
extended the method to semiparametric regression models using inverse probability of censoring/survival
weighting (Ghosh and Lin, 2002).

The use of joint frailty models provides a framework for analyzing recurrent event data with informa-
tive censoring and modeling the treatment effect on both the recurrent and terminating event processes.
Approaches that jointly model recurrent and terminating event data offer possibilities for increased effi-
ciency in the analysis of these types of data. Lancaster and Intrator (1998) proposed the use of a common
frailty for modeling the joint distribution of recurrent and terminating events. The two event processes
are then independent conditional on the frailty. Liu and others (2004) proposed a semiparametric joint
model for the intensity function where the shared frailty was allowed to have different effects on the
two event processes through a power parameter on the frailty for the terminating event. The same shared
frailty model was also used by Rondeau and others (2007) with hazard functions estimated by maximizing
the penalized likelihood. Paulon and others (2020) developed a Bayesian nonparametric joint-modeling
approach based on the Dirichlet process mixture prior but treated only the terminating event as the primary
outcome when modeling the association between survival times and recurrence of events.

In this article, we develop a Bayesian design for clinical trials involving recurrent and terminating event
data, using a multifrailty joint model based on gap times (i.e., time-between-events) for the recurrent event
data. Though our development is based on modeling gap times, an alternative development based on, for
example, modeling calendar time would be analogous. Our purpose in this article is not to argue for or
against a particular strategy for modeling the recurrent event times but rather to develop a framework
for how joint models of the type considered can be effectively deployed in design contexts. For ease of
exposition, we focus on the design of a parallel two-group randomized, controlled trial. We assume the
recurrent event (e.g., readmission to hospital) and terminating event (e.g., death) to be multiple primary
endpoints, which correspond to multiple chances to “win” as defined in FDA guidance “Multiple Endpoints
in Clinical Trials Guidance for Industry” (Food and Drug Administration, 2017). A superiority test is
developed to assess whether the IP has a favorable effect compared to the control, on at least one of the
two event processes (i.e., the IP shows benefit with respect to at least one and no harm with respect to either).
We propose the use of a joint model with two frailties, where one is specific to the recurrent event hazard
to account for the dependence between recurrent event times and the other accounts for the dependence
between the recurrent and terminating events. The proposed joint model provides a framework for the
characterization of treatment effects on two dependent event processes when both are primary outcomes
of interest. In the proposed design, the frailties are modeled via a parametric distribution (i.e., Gamma).
We also consider a generalization of the proposed approach that uses a nonparametric mixture of Dirichlet
processes to model the frailty distributions. A comparison of the two approaches is conducted through
simulation studies.

We develop a simulation-based approach to identify the necessary sample size required to obtain a
desired level of Bayesian power while controlling a Bayesian type I error rate. The Bayesian type I
error rate and power are defined with respect to sampling prior distributions which are based on the null
and alternative hypotheses, respectively (Psioda and Ibrahim, 2018, 2019). We evaluate the operating
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Joint models for recurrent and terminating events 3

characteristics of designs based on the multifrailty joint model and a frequentist approach. The frequentist
approach is conducted based on a one-sided superiority test using the Cox model, with the recurrent and
terminating events as a coprimary outcome. We note that the frequentist approach does not perfectly align
with the proposed approach due to the difference in testing structure, since the proposed Bayesian design
evaluates whether the IP is effective on at least one of the event processes and not harmful on either,
as discussed in detail in Section 3. Our results demonstrate that the proposed design provides similar or
higher power estimates compared to the frequentist approach. The type I error rates are well-controlled
when there is no effect or a non-negligible harmful effect on either event process.

The rest of this article is organized as follows: In Section 2, we introduce a multifrailty joint model
and define a superiority test using both event processes as multiple primary endpoints. We also develop
a Bayesian design and sample size determination (SSD) strategy. In Section 3, we use simulations to
compare the design based on the proposed joint model to the frequentist approach. We also generalize the
proposed approach to use a nonparametric mixture of Dirichlet processes to model the frailty distributions.
A comparison of the estimated operating characteristics based on the two approaches is also conducted.
We close the article with some discussion in Section 5.

2. METHODS

2.1. Multifrailty joint model

Using notation similar to Rondeau and others (2007), assume the ith patient has a terminating event at time
di or is censored at time Ci, and Xij is the jth recurrent event for j = 1, ..., ni, where ni is the total number of
observed recurrent events or censoring for patient i. Define Tij = min(Xij, di, Ci) as the observed recurrent
event times during follow-up, with δij = I (tij = Xij) indicating whether the jth recurrent event occurred.
Similarly, define T ∗

i = min(di, Ci) as the last observed time for the ith patient, which is either a time of
terminating event or time of censoring. Let δ∗

i = I (T ∗
I = di) denote the indicator for whether the patient

is censored or not. The gap time (i.e., time-between-events) is then given by Sij = Tij − Ti,j−1 with Ti0 = 0
for the recurrent event hazard function. Let zi be the IP indicator, xir and xiλ are the vectors of covariates
of interest for the recurrent and terminating event hazard ratio regression models, respectively. For the
ith patient, the multifrailty joint model of hazard functions for the recurrent event and terminating event
using gap times can be written as follows in equations (2.1) and (2.2), respectively,

ri(s|μi, νi) = μiνir0(s) exp(ziγr + x′
irβr) = μiνiri(s) (2.1)

λi(t|μi) = μiλ0(t) exp(ziγλ + x′
iλβλ) = μiλi(t) (2.2)

where γr , βr and r0(t) are the treatment effect, vector of coefficient parameters and piecewise constant
baseline hazard function for the recurrent event model, while γλ, βλ, and λ0(t) are the analogous quan-
tities for the terminating event model. The frailty μi ∼ Gamma(1/θ , 1/θ) accounts for the dependence
between the recurrent and terminating event processes, and the frailty νi ∼ Gamma(1/η, 1/η) accounts
for dependence between recurrent event times. The two frailties are assumed independent from each other.
Conditional on the frailty νi, the gap times for the same patient are mutually independent. Whenμi is fixed,
the two event processes are independent. The association parameter θ controls the strength of dependence
between the two event processes and, conditional on the variance parameter η, a larger θ reflects a stronger
dependence between the recurrent and terminating event processes.

2.2. Likelihood

Let D be the observed data for n patients. Denote ψ = (γ ,β, λ0, r0, θ , η) as the full set of fixed effect
parameters, where γ = (γr , γλ) and β = (βr ,βλ). For the ith patient, the likelihood contribution associated
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4 J. XU AND OTHERS

with the time-to-event component of the distribution is given by:

Li(ψ |μi, νi, D) =
ni∏

j=1

{
ri(Tij|μi, νi)

δij exp(−μiνi

∫ Tij

Tij−1

ri(t)dt)

}

× λi(T
∗
i |μi)

δ∗i exp(−μi

∫ T∗
i

0
λi(t)dt)

=
ni∏

j=1

{
μiνir0(Tij) exp(ziγr + x′

irβr)}δij exp{−μiνiR0(T
∗
i ) exp(ziγr + x′

irβr)
}

× {μiλ0(T
∗
i ) exp(ziγλ + x′

iλβλ)}δ∗i exp{−μi
0(T
∗
i ) exp(ziγλ + x′

iλβλ)},

(2.3)

where R0(t) and 
0(t) are the cumulative piecewise constant baseline hazard functions corresponding to
r0(t) and λ0(t), respectively. The complete data likelihood contribution for the ith patient is obtained by
multiplying the likelihood in (2.3) by the distribution for the frailties.

2.3. Study design

We consider a design for demonstrating the superiority of an IP compared to a control with respect to
recurrent and terminating events as multiple primary outcomes of interest. We follow patients for both
recurrent and terminating events starting at baseline. For each patient, recurrent events are documented
until a fixed time or the occurrence of the terminating event. The model makes the implicit assumption
that, assuming no terminating event occurs, the (stochastic) occurrence of recurrent events will continue
indefinitely. If the recurrent and terminating events occur at the same time, only the terminal event is
recorded.

2.3.1. Superiority test In order to test whether the IP has a favorable effect on at least one of the two
event processes (i.e., benefit to at least one and no harm to either), we consider the following group of
hypotheses:

H1 : exp(γr) > δr or exp(γλ) > δλ

H2 : exp(γr) > δr and exp(γλ) = δλ

H3 : exp(γr) = δr and exp(γλ) > δλ

H4 : exp(γr) = δr and exp(γλ) = δλ

H5 : exp(γr) < δr and exp(γλ) = δλ

H6 : exp(γr) = δr and exp(γλ) < δλ

H7 : exp(γr) < δr and exp(γλ) < δλ,

where δr and δλ are prespecified thresholds (e.g., δr = δλ = 1), exp(γr) and exp(γλ) are hazard ratios of
the IP compared to the control for the recurrent event and terminating event, respectively. We consider the
union of H1, H2, H3, and H4 as the null hypothesis (i.e., H0 = H1 ∪ H2 ∪ H3 ∪ H4) with the alternative
as the union of H5, H6, and H7 (i.e., Ha = H5 ∪ H6 ∪ H7). Hypotheses H1, H2 and H3 are consistent with
scenarios where the IP has an inferior effect on either one or both event processes. Hypotheses H5 and H6

assume that the IP is only effective on one of the event processes but is not harmful with respect to the
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Fig. 1. Depiction of the null and alternative hypothesis space. The gray-shaded region (including the coordinate
axis boundaries but not the origin) corresponds to the alternative and the complement of the aforementioned space
(including the origin) corresponds to the null hypothesis. The hypothesized treatment effects are −0.3 on both recurrent
and terminating event processes.

other. Hypothesis H7 assumes the IP has a favorable effect on both event processes. Figure 1 provides an
overview of the hypothesis space. The shaded area (including the coordinate axis boundaries but not the
origin) corresponds to the alternative Ha, and the complement of the aforementioned space (including the
origin) corresponds to the null hypothesis H0. The coordinate axis boundaries of the alternative hypothesis
corresponds to the subhypotheses H5 and H6.

2.4. Computation of posterior model probabilities

Consider the model space of the treatment parameter vector (γr , γλ), let B1 denote the full model (i.e.,
neither treatment parameter constrained), B2 and B3 define the models with γλ and γr fixed, respectively,
and B4 the model having both parameters fixed. We refer to models {B1, B2, B3, B4} as the Basis models.
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6 J. XU AND OTHERS

Table S2 in Appendix C of the Supplementary material available at Biostatistics online gives an overview
of the relationship between the Basis models and the hypotheses.

Let Ej be an indicator that γ takes a value in the parameter space associated with hypothesis Hj,
for j = 1, ..., 7. One can show that the posterior probabilities for the null and alternative hypotheses,
respectively, take the form

P(H0|D) = P(H1|D)+ P(H2|D)+ P(H3|D)+ P(H4|D)
= P(B1|D) · P(E1|B1, D)+ P(B2|D) · P(E2|B2, D)+ P(B3|D) · P(E3|B3, D)+ P(B4|D),

P(Ha|D) = P(H5|D)+ P(H6|D)+ P(H7|D)
= P(B2|D) · P(E5|B2, D)+ P(B3|D) · P(E6|B3, D)+ P(B1|D) · P(E7|B1, D),

(2.4)

where P(Ej|Bk , D) can be easily obtained by computing the proportion of Monte Carlo Markov chain
(MCMC) samples that satisfy Hj given Bk . The proof of (2.4) is given in Appendix D of the Supplementary
material available at Biostatistics online.

We adapt the methods of Chen (1994) and Chen and Shao (1997) to estimate P(Bk |D), k = 1, 2, 3, 4.
Denote φ = (ψ ,μ, ν), where μ = (μ1, ...,μn) and ν = (ν1, ..., νn). Let φ(Bk ) be the vector of parameters
in Basis model Bk that are free to vary. Write φ = (φ(−Bk ),φ(Bk )) where φ(−Bk ) is the complementary set
of parameters that are fixed under model Bk . Following the method of Chen and Shao (1997), based on
the MCMC sample {φ(i), i = 1, ..., N } from the full model B1, the posterior probability of model Bk can
be estimated as

p̂(Bk |D) =
1
N

∑N
i=1

(
L

(
φ
(Bk )
(i)

)
π(φ

(Bk )
(i) )w(φ

(−Bk )
(i) |φ(Bk )

(i) )

L(φ(i))π(φ(i))

)
p(Bk)

∑2P

p=1
1
N

∑N
i=1

(
L(φ

(Bp)
(i) )π(φ

(Bp)
(i) )w(φ

(−Bp)
(i) |φ(Bp)

(i) )

L(φ(i))π(φ(i))

)
p(Bp)

(2.5)

for k = 1, 2, 3, 4, where P = 2 (the number of treatment effect parameters) in our case and φ(i) =
(φ

(−Bk )
(i) ,φ(Bk )

(i) ).
Following Chen (1994), the weight function w(φ(−Bk )|φ(Bk )) is a completely known conditional density

of φ(−Bk )|φ(Bk ), with the optimal choice of w(φ(−Bk )|φ(Bk )) = p(φ(−Bk )|φ(Bk ), D). Since a closed form for
p(φ(−Bk )|φ(Bk ), D) is typically not available, an empirical procedure is used to select w(φ(−Bk )|φ(Bk )).
Specifically, we first compute the sample mean and covariance matrix (φ̃, 
̃) based on the MCMC
samples {φ(i), i = 1, ..., N }. Then, w(φ(−Bk )|φ(Bk )) can be approximated using the conditional den-
sity of φ(−Bk )|φ(Bk ) based on a normal approximation. Specifically, φ(−Bk )|φ(Bk ) ∼ N (φ̃k , 
̃k) where

φ̃k = φ̃
(−Bk ) + 
̃12
̃

−1
22 (φ

(Bk ) − φ̃
(Bk )
) and 
̃k = 
̃11 − 
̃12
̃

−1
22 
̃

′
12.

For example, under model B3, if φ(−B3) = γr and φ(B3) = (γλ,β, r0, λ0, θ , η,μ, ν), the corresponding
weight function is approximated as

w(φ(−B3)|φ(B3)) = p(γr|γλ,β, r0, λ0, θ , η,μ, ν, D)

= p(μ, ν|γr , γλ,β, r0, λ0, θ , η, D)
p(μ, ν|γλ,β, r0, λ0, θ , η, D)

p(γr|γλ,β, r0, λ0, θ , η, D)

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac025/6646084 by U

niversity of N
orth C

arolina - C
hapel H

ill Libraries user on 13 D
ecem

ber 2022

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data


Joint models for recurrent and terminating events 7

=
∏n

i p(μi, νi|γr , γλ,β, r0, λ0, θ , η, D)∏n
i p(μi, νi|γλ,β, r0, λ0, θ , η, D)

p(γr|γλ,β, r0, λ0, θ , η, D)

=
n∏
i

p(μi, νi|γr , γλ,β, r0, λ0, θ , η, D)
p(μi, νi|γλ,β, r0, λ0, θ , η, D)

× p(γr|γλ,β, r0, λ0, θ , η, D)

≈ p(γr|γλ,β, r0, λ0, θ , η, D)

≈ N (γr|γλ,β, r0, λ0, θ , η, D).

The conditional density of (μi, νi) given the fixed effects except γr (denominator) is approximately equal
to the conditional density given all fixed effects (numerator) because the frailties are patient-specific.
Therefore, the posterior model probability (PMP) can be computed based on the conditional density of
the fixed effects ψ . Elicitation of the prior model probability used in (2.5) is discussed in Section 2.5.

2.4.1. Algorithm for computing PMPs The PMPs can be computed following the algorithm

i Draw MCMC samples φB1
,φB2

,φB3
from models B1, B2, B3, respectively, with each sample vector

having N elements. Note that B1 is the full model.
ii Compute the posterior probability P(Ej|Bk , D) based on the MCMC samples, where

P(Ej|Bk , D) ≈ 1

N

N∑
i=1

1{φBk ,i ∈ Ej}

and 1{A} is an indicator that A is true.
iii Using φB1

, P(Bk |D) can be estimated for k = 1, 2, 3, 4 following the method given in (2.5).
iv We estimate P(Hj|D) for j ∈ {0, a} using (2.4).

2.5. Prior model probabilities

Define �0r = log(δr) and �0λ = log(δλ). Under the assumption that γr ⊥⊥ γλ a priori, we have the
prior distribution π(γ ) = π(γr)π(γλ). Both π(γr) and π(γλ) are specified as mixture distributions with
π(γr) = πr · 1(γr = �0r) + (1 − πr) · fr(γr) and π(γλ) = πλ · 1(γλ = �0λ) + (1 − πλ) · fλ(γλ), where
fr(·) and fλ(·) are Normal(ωr , σ 2

r ) and Normal(ωλ, σ 2
λ ), respectively. This prior formulation induces the

following prior model probabilities for the Basis models as

P(B1) = (1 − πr)(1 − πλ),

P(B2) = (1 − πr)πλ,

P(B3) = πr(1 − πλ),

P(B4) = πrπλ.

The induced prior probabilities for the hypotheses are then defined as

P(H1) = P(B1){1 − Fλ(�0λ)Fr(�0r)},
P(H2) = P(B2){1 − Fr(�0r)},
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8 J. XU AND OTHERS

P(H3) = P(B3){1 − Fλ(�0λ)},
P(H4) = P(B4),

P(H5) = P(B2)Fr(�0r),

P(H6) = P(B3)Fλ(�0λ),

P(H7) = P(B1)Fr(�0r)Fλ(�0λ),

where Fr(�0r) = ∫
1(γr < �0r)fr(γr)dγr = �(

�0r−ωr
σr

) and Fr(�0λ) = ∫
1(γλ < �0λ)fλ(γλ)dγλ =

�(
�0λ−ωλ
σλ

), where�(·) is the CDF of the standard normal distribution. As shown above, the priors for the
treatment effects π(γr) and π(γλ) together determine the prior model probabilities for the Basis models,
which further determine the induced prior probabilities for the hypotheses. Therefore, one only needs
to specify the prior distributions for treatment effects on the recurrent and terminating event processes
in order to elicit the prior model probabilities for the Basis models and the prior probabilities for the
hypotheses.

We provide a general scheme for the elicitation of priors when there is no prior information available.
Without loss of generality, we assume πr = πλ = π with both fr(·) and fλ(·) centered at 0 (i.e., ωr = ωλ =
0). Thus, we have Fr(�0r = 0) = Fr(�0λ = 0) = 1

2 and for the alternative hypothesis,

P(H5)+ P(H6)+ P(H7) = π(1 − π)/2 + π(1 − π)/2 + (1 − π)2/4

= −3

4
π 2 + 1

3
π + 1

4
,

which is maximized at (πr ,πλ) = ( 1
3 , 1

3 ). Therefore, the maximum weight the alternative hypothesis
can obtain is 1

3 when πr = πλ = 1
3 . For the standard deviation in fr(·) and fλ(·), we propose using

σr = ρ · |�1r| and σλ = ρ · |�1λ|, where �1r and �1λ are the hypothesized treatment effects on the
recurrent and terminating event processes, respectively. Details and further discussion about the choice
of ρ can be found in Section 3 and Appendix A of the Supplementary material available at Biostatistics
online.

2.6. Estimation and inference

Following Psioda and Ibrahim (2018, 2019), we define the Bayesian type I error rate and power using
user-specified null and alternative sampling prior distributions for ψ , respectively. Sampling priors have
also been referred to as design priors (O’Hagan and Stevens, 2001) and their use can be traced back to
the work of Brown and others (1987). We use the term sampling prior throughout this article. A sampling
prior specifies a probability distribution for the model parameters conditional on a particular hypothesis
being true (Psioda and Ibrahim, 2018). In our context, the null (alternative) sampling prior gives nonzero
weight to values of ψ such that H0 (Ha) is satisfied. The sampling prior distributions are referred to as
such because they are used to sample parameter values in the simulation-based estimation procedure for
the Bayesian type I error rate and power. For the special case where the sampling priors place a point-mass
on a fixed value of the model parameters such that π(s)0 (ψ) = 1(ψ = ψ0) and π(s)a (ψ) = 1(ψ = ψa),
which is our focus in this article, the Bayesian type I error rate and power closely align with the frequentist
versions. The superscript (s) indicates that the prior is a sampling prior.

Letα(s) andβ(s) denote the Bayesian type I and II error rates. Prespecify p0 as the threshold for substantial
evidence such that we reject the null hypothesis if P(Ha|D) ≥ p0. For a fixed value ofψ , the null hypothesis
rejection rate is defined as r(ψ) = E[1{P(Ha|D) ≥ p0}|ψ]. The Bayesian type I error rate and power are

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article/doi/10.1093/biostatistics/kxac025/6646084 by U

niversity of N
orth C

arolina - C
hapel H

ill Libraries user on 13 D
ecem

ber 2022

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac025#supplementary-data


Joint models for recurrent and terminating events 9

defined as α(s) = E[r(ψ)|π(s)0 ] and 1 − β(s) = E[r(ψ)|π(s)a ], which, for nondegenerate sampling priors,
are weighted averages of r(ψ) with weights determined by π(s)0 (ψ) and π(s)a (ψ), respectively.

The posterior distribution satisfies π(ψ ,μ, ν|D) ∝ L(γ ,β, r0, λ0|μ, ν, D)× f (μ|θ)× f (ν|η)×π(f )(ψ)
where π(f )(ψ) is the fitting prior. We assume the initial fitting prior is obtained by taking

π(f )(ψ) = π0(γ )π0(β)π0(θ)π0(η)π0(λ0)π0(r0)

and assume the following proper priors:

π0(β) ∝ Normal(0,
0 = 52 · I )

π0(θ) ∝ Gamma(aθ = 1.1, bθ = 1.1)

π0(η) ∝ Gamma(aη = 1.1, bη = 1.1)

π0(λ0) ∝
Q∏

q=1

Gamma(aq = 0.1, bq = 0.1)

π0(r0) ∝
P∏

p=1

Gamma(ap = 0.1, bp = 0.1).

The gamma priors specified above use the shape and rate parameterization. For example, taking aq =
bq = 0.1 gives mean 1 and variance of 10 (noninformative prior) and aθ = bθ = 1.1 gives mean 1 and
variance of 0.91 (weakly informative prior to help stabilize the MCMC sampling of frailties).

2.7. Sample size determination

We propose using simulations to identify the required number of terminating events (effectively the sample
size in the trials) such that the trial design has sufficiently high Bayesian power. The number of patients
enrolled in the trial may be chosen to obtain a specified number of terminating events in a specified interval
of time on average. Let n and v denote the sample size and number of terminating events, respectively. We
consider an approach that fixes the ratio r = n

v but varies the number of terminating events. If n1 patients
result in obtaining v1 terminating events in a specific time frame, then to obtain v2 ≥ v1 terminating events
in the same time frame, one should increase n2 proportionally.

We want to determine the smallest v such that the Bayesian power for the design is at least 1 − β(s). A
simulation-based SSD procedure is given below:

S1. Let v1, ..., vK denote the potential terminating event totals at which the trial might be stopped.
S2. Initialize k = 1.
S3. Compute the Bayesian power 1 − β

(s)
k based on vk .

S4. If 1 − β
(s)
k ≥ 1 − β(s) then set v = vk and stop; otherwise, increment k and return to S3.

Note that the approximate Bayesian type I error rate will be α(s) when one takes p0 = 1 −α(s) for the case
where point-mass null sampling priors are used (along with a noninformative fitting prior). Thus, for the
identified choice of v, it will generally be the case that α(s) ≈ 1 − p0 and so specific efforts to control the
Bayesian type I error rate at level α(s) are not generally needed when p0 is chosen in this way. Nonetheless,
one can always compute the exact Bayesian type I error rate via simulation to ensure it is sufficiently close
to the desired nominal level.
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10 J. XU AND OTHERS

Now we expound more on Step S3 from the simple algorithm given above. Letting R be the number of
simulation studies to be performed, to estimate the Bayesian power 1 − β

(s)
k associated with terminating

event total vk , one does the following:

S3.1 Sample ψ (b) from the alternative sampling prior π(s)1 (ψ).

S3.2 Simulate the observed data D(b) as defined below.

S3.3 Estimate the PMP P(Ha|D) using an approach described in Section 2.4 and compute the null
hypothesis rejection indicator

r(b) = 1{P(Ha|D(b)) ≥ p0}.

S3.4 Approximate the Bayesian power as:

1 − β
(s)
k ≈ 1

R

R∑
b=1

r(b).

The observed trial data D(b) as required for Step S3.2 can be simulated using the following steps. For
patient i = 1, ..., n, we do the following:

1. Simulate the enrollment time ri using a chosen enrollment distribution.
2. Simulate xi based on a treatment distribution and zir and ziλ based on the covariate distribution.
3. Simulate μi from Gamma(1/θ , 1/θ) and νi from Gamma(1/η, 1/η).
4. Simulate oi from a uniform distribution and compute the time-to-event di = S−1

i (oi), where Si(t) is
the survival function with hazard λi(t) = μiλ0(t) exp(ziγλ + x′

iλβλ).
5. Simulate ei from a uniform distribution and compute the gap times of recurrent events yik = R−1

i (ei),
where Ri(t) is the survival function with hazard ri(t) = μiνir0(t) exp(ziγr + x′

irβr).
6. Simulate the time-to-censorship Ci based on the chosen censorship distribution.
7. Set T ∗

i = min(di, Ci) and δ∗
i = I (di ≤ Ci).

Let tmax be the duration of time from the first enrollment to the time at which the target number of terminating
events is reached (or the maximum study duration is reached). Then, for patient i = 1, ..., n,

1. Remove any patient with ri ≥ tmax (Patients whose simulated enrollment time occurs after the study
terminates).

2. If T ∗
i > tmax, set T ∗

i = tmax − ri and δ∗
i = 0.

3. Compute Ni(T ∗
i ) = maxj(j :

∑j
k=1 yik ≤ T ∗

i ) and record all gap times for j ≤ Ni(T ∗
i ) (i.e.,

Tij = ∑j
k=1 yik and δij = 1 for j ≤ Ni(T ∗

i )).

3. EXAMPLE APPLICATION: BAYESIAN CLINICAL TRIAL FOR COLORECTAL CANCER

Our design methodology is motivated by a colorectal cancer study conducted at Hospital Universitary
in L’Hospitalet, Spain (González and others, 2005). The study investigated sex-based inequalities in
hospital readmission among patients diagnosed with colorectal cancer. There were 403 patients diagnosed
between January 1996 and December 1998, and they were actively followed up until 2002. Hospital
readmission times related to colorectal cancer after surgery were collected, with mortality also recorded
during follow-up.
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Joint models for recurrent and terminating events 11

In the example application, we consider a design evaluating an IP (e.g., chemotherapy) with respect
to hospital readmission times and mortality as multiple primary outcomes. For each patient, readmission
to a hospital is recorded whenever it occurs until some fixed time (e.g., 6 years) or the occurrence of the
terminating event. If hospital readmission and mortality occur at the same time (i.e., the patient dies during
hospitalization), only the terminal event will be recorded. In the simulated trials, patients were randomized
to two treatment arms using a 1:1 allocation scheme and the accrual rate was simulated to be uniform over
a 1-year period. Censoring (i.e., dropout) was assumed to follow a mixture distribution whereby patients
had a 0.05 probability of dropping out of the trial early and, conditional on being a dropout, the time
to dropout was uniform over a 6-year period. All patients were administratively censored when the total
number of terminating events for the simulated trial was reached. In the colorectal cancer study, gender
was prognostic of readmission to a hospital and so we included a binary covariate (male vs female) in
our hypothetical trial simulations, where xir = xiλ is an indicator that the patient’s gender is female. The
covariate was simulated such that approximately 50% of the subjects were females.

We assumed piecewise constant baseline hazards for both the recurrent and terminating hazard func-
tions. In the design simulations, we considered five-component piecewise constant functions with knots at
times (days) {12.0,56.5,179.0,418.0} and {128.5,260.5,488.0,791.5} for recurrent and terminating haz-
ards, respectively. Knot placement was determined by fitting the proposed joint model to the colorectal
cancer data such that each time interval of the hazards had approximately the same number of events.

For the treatment effects, we not only proposed the hypothesized effects on both hospital readmission
and mortality as �1r = �1λ = −0.3 but also allowed various sampling priors of the treatment effects to
study the trends in Bayesian type I error rate and power. For treatment effects on both event processes, we
considered point-mass priors γr , γλ ∈ {−0.60, −0.50, −0.40, −0.30, −0.20, −0.10, 0.00} for a favorable
or no effect and γr , γλ ∈ {0.02, 0.04, 0.06} for a harmful effect. The nuisance parameter values were taken
to equal the approximate posterior modes based on our analysis of the colorectal cancer data as shown in
Table S3 in Appendix C of the Supplementary material available at Biostatistics online. We implemented
the prior distributions proposed in Section 2.5 with ρ = 2 which leads to prior probabilities for the null
and alternative hypothesis equal to 2

3 and 1
3 , respectively. The prior distributions for the treatment effects

on both event processes are the same as π(γ ) = 1
3 · 1(γ = 0)+ 2

3 · N(0, 0.6), where γ is used hereto to
represent the treatment effect on the recurrent or terminating event process. Further discussion about the
different choices of ρ can be found in Appendix A of the Supplementary material available at Biostatistics
online. To identify the desired number of terminating events required to achieve a Bayesian power equal to
0.8, we considered v = 350 to 500 in increments of 25. A total of 4000 simulated trials were performed to
estimate the operating characteristics for each choice of sampling prior and each sample size considered.

We evaluate the performance of the proposed approach against a frequentist approach through type I
error rate and power estimates. The frequentist approach is implemented based on a one-sided superiority
test using the Cox model, with both the recurrent and terminating event hypotheses taken to be coprimary.
For that approach, we test whether the IP has a favorable effect on both event processes, and the dependence
between recurrent event times is accounted for using the marginal approach of Wei and others (1989).
Note that the frequentist approach does not perfectly align with the proposed Bayesian approach due to the
difference in how the alternative hypothesis is defined. It can be seen from Figure 1 that for the alternative
hypothesis, the Bayesian approach includes the coordinate axis boundaries but the frequentist approach
excludes them. Therefore, the frequentist approach does not have the capability to evaluate whether the
IP is beneficial to at least one of the event processes and not harmful to either, whereas the Bayesian
approach does.

In Sections 3.1 and 3.2, we compared the performances of the Bayesian and frequentist approaches
in terms of type I error rate and power, respectively, when the number of terminating events v = 400.
Section 3.3 presents the estimated type I error rate and power curves for the proposed approach with
respect to different sample sizes.
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12 J. XU AND OTHERS

Fig. 2. Estimated Bayesian type I error rate curves when the IP has a favorable effect on one event process but has
no effect or causes a modest degree of harm on the other.

3.1. Evaluating the Bayesian type I error rates

In this section, we compare the type I error rate estimates based on the proposed design and the frequentist
approach. We first considered the scenario where there is no treatment effect on either the recurrent or
terminating event hazard (i.e., γr = γλ = 0). Fitting the Cox model to the two time-to-event endpoints
(recurrent and terminal) separately produces type I error rates equal to the nominal level (i.e., 0.05)
individually. Both the proposed Bayesian approach and the frequentist approach have a conservative type
I error rate (< 0.01) for their respective joint hypotheses regarding both effects. Figure 2 presents the
estimated Bayesian type I error rate curves for the proposed Bayesian approach when the IP has a favorable
effect on one event process but has no effect or causes a modest degree of harm on the other. The favorable
effect is assumed to equal the hypothesized level (i.e., γr = −0.3 or γλ = −0.3). For the nonbeneficial
effect, we varied its value from no effect to modest harm to study how the type I error rate changes near
the hypothesis boundary. Note that a favorable effect for one outcome coupled with no effect on the other
corresponds to the alternative hypothesis under the Bayesian approach and hence represents Bayesian
power. According to the curves, the estimated Bayesian type I error rate was slightly inflated when the
treatment effect was close to 0 (e.g., γr = −0.3 with γλ = 0.02 resulting in a type I error rate around
0.07). However, the estimates decreased quickly to/below the nominal level of 0.05 when the effects on
either the recurrent or terminating event process is modestly harmful (e.g., effect equal to 0.03 to 0.05
or approximately 10–17% of the magnitude of the hypothesized effect). The estimated Bayesian type I
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Joint models for recurrent and terminating events 13

Fig. 3. Estimated power curves based on various point-mass sampling priors for the treatment effects. The prior for
the treatment effect for one event process was taken equal the hypothesized level, and it was varied for the other event
process.

error curves where treatment effect values were very close to the hypothesis boundaries are presented in
Appendix B of the Supplementary material available at Biostatistics online.

3.2. Evaluating power

Figure 3 compares the power curves estimated based on the Bayesian and frequentist approaches with
various point-mass sampling priors of treatment effects. We took the prior for the treatment effect on
the recurrent event process equal to the hypothesized level (i.e., γr = −0.3) and varied the prior of the
effect on the terminating event process γλ ∈ {0.0, −0.1, −0.2, −0.3, −0.4, −0.5, −0.6}. The corresponding
curves are shown in column 1 of Figure 3. We also considered the prior for the treatment effect on the
terminating event process equal the hypothesized level and varied the prior of the effect on the recurrent
event process γλ ∈ {0.0, −0.1, −0.2, −0.3, −0.4, −0.5, −0.6}. The corresponding curves are presented
in column 2. Compared with the frequentist approach, the Bayesian design produced comparable power
estimates when the favorable effect on the terminal event process is moderate but gave significantly higher
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14 J. XU AND OTHERS

Fig. 4. Bayesian type I error rate and power curves based on varying numbers of required terminal events.

estimates when the effect is small or large. Similar patterns can also be observed when a favorable effect
on the terminating event process was fixed equal to the hypothesized level but varied on the recurrent
event process. The power curves based on the frequentist approach are presented in the row 2 of Figure 3,
including the curves estimated using the Cox model on the recurrent and terminating event data separately.
Because the frequentist power was computed based on a one-sided superiority test with respect to both
events as coprimary outcomes, its value was then bounded by the smaller value between the two curves.

3.3. SSD example

Figure 4 demonstrates the estimated Bayesian type I error rate and power curves based on the proposed
Bayesian approach regarding different sample sizes (number of terminating events). Treatment effects
on both event processes were assumed to equal the hypothesized level. Based on the type I error curve,
the proposed approach controlled the Bayesian type I error rate conservatively below the nominal level
of 0.05, regardless of the sample size. The estimated Bayesian power reached the targeted 0.8 when the
number of terminating event is around 460.

4. JOINT MODEL WITH MIXTURE OFDIRICHLET PROCESSES

In Section 2, we developed a multifrailty joint model with both frailties having parametric distributions
(i.e., Gamma), and we demonstrated the proposed design’s properties using simulation studies in Section 3.
In this section, we extend the proposed model to a joint model with nonparametric frailty distributions,
using mixtures of Dirichlet processes, to investigate the performance of our design strategy in the presence
of patient heterogeneity. The only difference between the proposed and nonparametric approaches is how
we modeled the frailty distributions. For the proposed approach, we assumed for the ith patient,

μi ∼ Gamma(1/θ , 1/θ),

νi ∼ Gamma(1/η, 1/η),
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Joint models for recurrent and terminating events 15

which was described in Section 2. For the nonparametric approach, mixtures of Dirichlet process priors
were implemented for the estimation of the frailties with details given below.

4.1. Multifrailty joint model with mixtures of Dirichlet processes

For the ith patient, we assume

μi∼ G1, [G1|c1,ψ] ∼ DP(c1, G01(θ0))

νi ∼ G2, [G2|c2,ψ] ∼ DP(c2, G02(η0)),

where G1 and G2 are general distributions, c1 and c2 are positive scalars. The probability measures G01(·)
and G02(·), also called base measures, are “guesses” at the parametric distributions for μi and νi, respec-
tively. We took G01(·) and G02(·) to be gamma distributions with means 1 and variances θ0 and η0,
respectively, where θ0 and η0 were taken to equal the approximate posterior modes based on our analysis
of the colorectal cancer data as shown in Table S3 in Appendix C of the Supplementary material available
at Biostatistics online. The scalar ck is a confidence parameter reflecting a prior belief about how similar
the distribution Gk is to the base measure G0k(·), for k = 1, 2 (Kleinman and Ibrahim, 1998). Following
Escobar (1994), the full conditional distributions of μi and νi are derived as:

p(μi|Di,ψ ,μ−i, νi) ∝
∑
j �=i

q1
j δ

1
μj

+ c1 · g01(μi) · p(Di|ψ , νi,μi), (4.6)

p(νi|Di,ψ , ν−i,μi) ∝
∑
j �=i

q2
j δ

2
νj

+ c2 · g02(νi) · p(Di|ψ ,μi, νi), (4.7)

where p(Di|ψ , νi,μi) and p(Di|ψ ,μi, νi) are the sampling distributions of Di, with Di defined as the
observed data for the ith patient. δ1

s and δ2
s are degenerate distributions with point mass at s, g01 and g02 are

the densities corresponding to the base measures G01 and G02, respectively. Lastly, q1
j = p(Di|ψ , νi,μj)

and q2
j = p(Di|ψ ,μi, νj) for j = 1, ..., i−1, i+1, ..., n. Note that as ck −→ ∞, Gk −→ G0k(·) for k = 1, 2,

so that the joint model with the mixture of Dirichlet processes converges to the proposed joint model (fully
parametric) defined in Section 2. The algorithm for sampling the full set of parameters under the mixture
of Dirichlet processes is provided in Appendix F of the Supplementary material available at Biostatistics
online.

4.2. Example application

We demonstrate the nonparametric approach using the same data generated in Section 3. The simulation
settings (e.g., ρ, δ1·, etc.) were taken to be the same as in Section 3, and we only considered scenarios where
the treatment effects on both the recurrent and terminating event processes equaled the hypothesized level
(i.e., γr = γλ = −0.3) for power calculations and no effect on either event process (i.e., γr = γλ = 0)
for type I error estimation. We took the confidence parameters c1 = c2 = c and varied its value c ∈
{10, 50, 100, 500, 1000, ∞}. Results based on c < 10 were not presented here because the sampled values
of both frailties were highly discrete for such small c’s. More details and discussion about using smaller
values of c can be found in Appendix E of the Supplementary material available at Biostatistics online. For
a fair comparison, we defined both base measures G01 and G02 using the variance parameters estimated by
fitting the fully parametric joint model to the colorectal data. The estimated parameter values can be found
in Table S3 in Appendix C of the Supplementary material available at Biostatistics online. We considered
v = 400 and due to the computational burden, a total of 1000 simulated trials were performed to estimate
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the operating characteristics for each choice of sampling prior. The estimated Bayesian type I error and
power are shown in Table 2, as well as the estimates based on the proposed (parametric) joint model.

According to Table 2, the type I error and power estimated when c = ∞ are highly similar to the
estimates based on the proposed parametric joint model, an intuitive result given that the joint model with
the mixture of Dirichlet processes converges to a parametric joint model with known frailty distributions
as c −→ ∞. Among the results based on the nonparametric frailty joint model, for a certain choice of π ,
the power estimates increase as c decreases to 100 and then remain approximately constant. These similar
estimates across small c’s are also attributable to the fact that sampled values of both frailties are highly
discrete.

5. DISCUSSION

In Section 3 for the colorectal cancer study, we compared the performance of the proposed approach to
a frequentist approach that treated both events as coprimary. An alternative frequentist approach would
be to consider the events as multiple primary endpoints with an appropriate multiplicity correction. The
hypothesis test then becomes whether the IP shows a beneficial effect on either one of the recurrent and
terminating event processes (regardless of whether there is a harmful effect on the other). The proposed
Bayesian approach could be reformulated for this setting but is beyond the scope of this article. Further-
more, an IP that provides benefit with respect to one event process but harm on the other is not easily
interpretable as beneficial. Extending the proposed framework to allow for multiple primary endpoints of
both Bayesian and frequentist approaches is a potential topic for future research for the authors

For the sampling priors used in the example application, we used point-mass sampling prior distributions
based on parameter estimates from an analysis of the colorectal cancer data. Given a choice of (δr , δλ),
any combination of (γr , γλ) that determines a set of (eγr , eγλ) that satisfies (eγr > δr or eγλ > δλ) or (eγr >

δr , eγλ = δλ) or (eγr = δr , eγλ > δλ) or (eγr = δr , eγλ = δλ), which corresponds to hypotheses H1, H2, H3,
and H4, will define a null sampling prior and any combination that determines (eγr < δr , eγλ = δλ) or
(eγr = δr , eγλ < δλ) or (eγr < δr , eγλ < δλ), which corresponds to hypotheses H5, H6, and H7, will define
an alternative sampling prior. For example, given (δr = δλ = 1), (γr = γλ = 0) defines a null sampling
prior and (γr = γλ = −0.3) defines an alternative sampling prior. General advice for how to choose the
point-mass sampling priors in the joint-modeling setting is also given in Xu and others (2020). More
generally, the Bayesian framework for power and type I error evaluation is applicable for nondegenerate
sampling priors on the parameters as well. For more extensive discussion on the use of nondegenerate
sampling priors for computing Bayesian power and type I error rates, we refer the readers to the recent
work of Psioda and Ibrahim (2018, 2019) and the references cited therein.

In Section 2.5, we proposed πr = πλ = π = 1
3 to specify the prior distributions for treatment effects

on the two event processes which help to indirectly elicit the prior probabilities for Basis models and the
prior probabilities for the respective hypotheses. This choice was proposed as the default when there is
little information suggesting a more appropriate choice for πr and πλ. Recall that the alternative space for
the proposed approach includes (i) parameter values consistent with IP benefit on both event processes
and (ii) parameter values consistent with IP benefit on one event process and no effect on the other. If
case (i) is believed to be most likely, comparatively smaller values of π are suggested. In contrast, if
case (ii) is viewed as equally likely, comparative larger values of π are suggested. Our choice to take
π = 1

3 reflects a compromise between these two scenarios and reflects a priori uncertainty regarding
on which event process the IP will have an effect in case (2). Table 1 presents the estimated operating
characteristics with πr = πλ = π ∈ {0.5, 1/3, 0.05} under hypotheses specified on the boundary (i.e., IP
has no effect on at least one of the event processes) and off the boundary (e.g., IP has favorable effects
on both event processes). Through the power for scenarios where there is only an IP effect on one event
process (e.g., rows 2–5) one can see that taking relatively larger values of π produces greater power.
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Table 1. Type I error rate and power estimates with different choices of π

γr γλ π = 0.5 π = 1/3 π = 0.05

0 0 <0.01 <0.01 0.01
0 −0.3 0.13 0.08 0.06
0 −0.6 0.49 0.21 0.08
−0.3 0 0.18 0.09 0.05
−0.6 0 0.27 0.12 0.06
−0.3 −0.3 0.67 0.73 0.79

γr , Treatment effect on recurrent event process.
γλ, Treatment effect on terminating event process.

Table 2. Bayesian type I error rate and power estimates with different values of c

γr = γλ = 0 γr = γλ = −0.3

c π = 0.5 π = 1/3 π = 0.05 π = 0.5 π = 1/3 π = 0.05

Parm <0.01 <0.01 0.01 0.67 0.73 0.79
∞ <0.01 <0.01 0.01 0.66 0.72 0.79
1000 <0.01 <0.01 0.01 0.68 0.73 0.79
500 <0.01 <0.01 0.01 0.71 0.74 0.80
100 <0.01 <0.01 0.01 0.73 0.75 0.79
50 <0.01 <0.01 0.01 0.74 0.75 0.79
10 <0.01 <0.01 0.01 0.74 0.75 0.78

Parm, Parametric frailty distribution from Section 2.

Lastly, we considered the case where πr = πλ based on the assumption that, for case (2), it is not likely
that it would be known upon which of the two event processes the IP is likely to have an effect. If such
information were available, using that event to define the primary outcome, rather than having multiple
primary outcomes, would seem to be the most sensible approach.

In Section 4, we extended our proposed model to a joint model with mixture of Dirichlet processes
so the frailties can be modeled in a relatively flexible way. Results show that the designs based on joint
models with parametric/nonparametric frailty distributions produce comparable Bayesian type I error
and power estimates. In practice, one can always choose a less restrictive model (e.g., joint model with
nonparametric frailty distribution) for analysis purposes. However, the proposed approach with parametric
frailties serves as a good fit, particularly for design purposes, since it provides comparable estimates but
saves substantially more computational time.

When studying the recurrent and terminating event processes, there are other approaches to model the
two event processes jointly as described in Section 1. For example, van den Boom and others (2021)
recently proposed a model in which the number of recurrences before termination is a random variable
and conditionally on this number, a joint distribution for recurrence and survival was specified. However,
our focus here is on a design strategy and comparisons with other joint models could be a topic for future
research but is beyond the scope of this article.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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