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SUMMARY

Joint models for longitudinal and time-to-event data are increasingly used for the analysis of clinical trial
data. However, few methods have been proposed for designing clinical trials using these models. In this
article, we develop a Bayesian clinical trial design methodology focused on evaluating the treatment’s effect
on the time-to-event endpoint using a flexible trajectory joint model. By incorporating the longitudinal
outcome trajectory into the hazard model for the time-to-event endpoint, the joint modeling framework
allows for non-proportional hazards (e.g., an increasing hazard ratio over time). Inference for the time-to-
event endpoint is based on an average of a time-varying hazard ratio which can be decomposed according
to the treatment’s direct effect on the time-to-event endpoint and its indirect effect, mediated through the
longitudinal outcome. We propose an approach for sample size determination for a trial such that the design
has high power and a well-controlled type I error rate with both operating characteristics defined from a
Bayesian perspective. We demonstrate the methodology by designing a breast cancer clinical trial with
a primary time-to-event endpoint and where predictive longitudinal outcome measures are also collected
periodically during follow-up.
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1. INTRODUCTION

In clinical trials with time-to-event endpoints, often many biologic outcomes are measured longitudinally
throughout the follow-up period (Brown and Ibrahim, 2003). The longitudinal outcomes, such as quality
of life (QOL) measurements or immune response measures (e.g., CD4 counts), are typically measured
intermittently at potentially different times with a potentially different number of measurements for each
patient (Wulfsohn and Tsiatis, 1997). In many cases, the longitudinal data are predictive of time-to-
event outcomes such as overall survival (OS), disease-free survival (DFS), or progression-free survival
(PFS). Traditional approaches to time-to-event analysis in clinical trials have often ignored longitudinal
outcome data when modeling the time-to-event distribution (e.g., Cox model) and thus failed to account
for, or capitalize on, relationships between the two outcomes. Moreover, situations arise where the effect
of treatment on the time-to-event outcome may be mediated by the longitudinal outcome (e.g., cancer
immunotherapy (treatment) leads to immune system mobilization (mediator) which leads to improved
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592 J. XU AND OTHERS

time-to-event outcomes). In these cases, incorporating the longitudinal outcome trajectory into the time-to-
event model may lead to a better understanding of treatment effects and may better account for deviations
from the ubiquitous proportional hazards assumption. Approaches that jointly model longitudinal and
time-to-event data offer possibilities for increased efficiency in the analysis of these types of data. One
benefit of using joint models for the simultaneous analysis of longitudinal and time-to-event data is that
joint models can produce more efficient estimates of treatment effects on both the longitudinal and time-
to-event outcomes (Ibrahim and others, 2010). This greater efficiency will allow a smaller sample size
and/or higher power in a trial. Chen and others (2011) also show that joint models can provide treatment
estimates with less bias.

Early work on the use of joint models stemmed from clinical trials in acquired immune deficiency
syndrome, where immunologic markers such as CD4 counts are measured frequently. See for example the
work of De Gruttola and Tu (1994), Faucett and Thomas (1996), Wulfsohn and Tsiatis (1997), and Chi
and Ibrahim (2007). Other applications of joint models include using QOL data in a cancer context. QOL
data are typically collected via a questionnaire or assessed through monitoring adverse events during
the follow-up period. Selected works on the use of joint models in this area include the works of Chi
and Ibrahim (2006, 2007). Ibrahim and others (2004) and Brown and Ibrahim (2003) apply joint models
to cancer-vaccine trials, where vaccines are intended to mobilize patients’ immune response to destroy
tumor cells. Measures of the immune response are often measured repeatedly to facilitate the study of the
relationship between immune response and time-to-recurrence or death.

In this article, we develop a Bayesian clinical trial design framework using a joint model for longi-
tudinal and time-to-event data. For ease of exposition, we focus on the design of a parallel two-group
randomized, controlled trial. We assume the primary endpoint is a time-to-event endpoint (e.g., PFS) and
that a longitudinal outcome (e.g., QOL) is measured repeatedly during the follow-up period, and that it
potentially provides predictive or prognostic information about the time-to-event endpoint. We propose
the use of a trajectory joint model that incorporates patient-specific random effects to account for patient-
level heterogeneity in both the longitudinal and time-to-event outcomes. The joint model proposed allows
the treatment to have both direct and indirect effects on the time-to-event endpoint. The direct effect
is assumed to be multiplicative on the hazard for the time-to-event endpoint (i.e., consistent with the
proportional hazard assumption), while the indirect effect is mediated through the longitudinal outcome.
Thus, the indirect effect is characterized by the treatment’s effect on the longitudinal outcome and the
longitudinal outcome’s effect on the time-to-event endpoint. When the treatment effect is entirely indirect,
the longitudinal outcome can be considered a surrogate, as defined by Prentice (1989).

We develop a simulation-based approach whereby one can identify the necessary sample size required
to obtain the desired level of Bayesian power while controlling a Bayesian type I error rate. Bayesian (i.e.,
average) type I error rate and power are defined with respect to sampling prior distributions which are
based on the null and alternative hypotheses, respectively (Psioda and Ibrahim, 2018, 2019). For the special
case where the sampling priors place a point-mass on a fixed value of the model parameters, which is our
focus in this article, the Bayesian type I error rate and power for a design closely align with the frequentist
versions. We evaluate the operating characteristics of designs based on a joint model incorporating patient-
specific random effects to capture patient-level heterogeneity in outcomes, a simplified joint model that
omits the random effects but otherwise incorporates the longitudinal outcome trajectory in the time-to-
event model, a Cox proportional hazards regression model, and the log-rank test. Our results demonstrate
that the random effects joint model outperforms the fixed effect joint model and the commonly used
alternative methods, even in circumstances where the trajectory function is not perfectly specified.

The rest of this article is organized as follows: in Section 2, we introduce a trajectory joint model, define
an average time-varying hazard ratio, and discuss its decomposition into direct and indirect treatment
effect contributions. We also develop the study design and Bayesian sample size determination strategy.
In Section 3, we provide a simulation study comparing our design based on the proposed joint model
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Bayesian design using joint models 593

to designs based on other commonly used methods (e.g., Cox model). We close the article with some
discussion in Section 4.

2. METHODS

2.1. Trajectory joint models

Let yi(t) be the longitudinal outcome at time t for patient i where yi(t) = μi(t)+εi(t)with εi(t) ∼ N (0, σ 2).
We refer to the conditional expectation of yi(t), denoted by μi(t), as the longitudinal process and consider
a design model based on a trajectory function given as follows:

μi(t) = E[yi(t)|θ i] = g(t)T θ i + X i(t)
T γ

= g(t)T θ i + g(t)T γ t + xig(t)
T γ x + zT

i γ z,
(2.1)

where

• g(t) is a function of time t,

• θ i ∼ N (0,�θ) is a mean zero random effect with positive definite covariance matrix �θ ,

• X i(t) = [g(t)T , xig(t)T , zT
i ]T represents the covariate process, with treatment indicator xi and

baseline covariate vector zi, and

• γ = [
γ t , γ x, γ z

]
is a vector of regression coefficients with γ t , γ x, and γ z corresponding to g(t),

xig(t), and zi, respectively.

On the basis of randomization and assuming that the longitudinal measurement at time t = 0 is pre-
treatment, the main treatment effect can be set to 0 and excluded from the model. In our development, we
keep the main effect simply for ease of exposition. Earlier works (Rizopoulos, 2010, 2016; Zhang and
others, 2016) have included both treatment and time covariates in the model but not their interaction. Such a
model corresponds to an instantaneous and constant difference between treatment groups over time, which
may not be plausible in practice for the longitudinal outcome. Thus, we incorporate the interaction term
between treatment and the time function to provide increased flexibility in how the impact of treatment
can change over time.

For the time-to-event model, we assume a hazard function which takes form

log λi(t) = log λ0(t)+ β
{
g(t)T θ i + g(t)T γ t + xig(t)

T γ x

} + xiαx + zT
i αz, (2.2)

where β is an association parameter that controls the influence of the longitudinal process on the time-
to-event distribution, αx and αz are direct effects of the treatment and covariates on the time-to-event
distribution, and λ = (λ01, ..., λ0K)

T is a K-component piecewise constant baseline hazard associated
with a fixed partition of the time axis. Specifically for the baseline hazard, we denote the K − 1 change
points by L1, ..., LK−1 which satisfy L0 = 0 < L1 < ... < LK−1 < LK = ∞ and thus λ0(t) = λ0k for
t ∈ [Lk−1, Lk). One can see that the model allows for deviations from the proportional hazards assumption
on the treatment effect through the quantity βg(t)T γ x in the hazard function when β �= 0 and γ x �= 0.

Zhang and others (2016) define a similar longitudinal process as (2.1) with g(t) being a polynomial
vector of time. In contrast to (2.2), they only incorporate the random term g(t)T θ i into the hazard function,
which accounts for patient-level heterogeneity in time-to-event outcomes but does not account for effects
of the treatment on the hazard that are mediated by the longitudinal outcome (i.e., indirect effects). This
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594 J. XU AND OTHERS

approach may be appropriate when the longitudinal outcome is prognostic of patient outcomes but not
thought to be on the causal pathway for the time-to-event outcome. In our development of the joint
model, we incorporate the longitudinal process μi(t) (excluding the baseline covariate component zT

i γz)
into the hazard function for the two-pronged purpose of capturing patient-level heterogeneity in time-
to-event outcomes (i.e., overdispersion) and allowing for more accurate characterization of a treatment’s
effect on the time-to-event outcome in cases where mediation of the effect by the longitudinal outcome
is plausible. In the case of a strong indirect treatment effect that does not change over time, survival
curves should separate immediately. However, in cancer immunotherapy trials, a “late separation” is often
observed (Zhang, 2017), which suggests a minimal treatment effect on the hazard early in the observation
period. Thus, modeling a non-constant treatment effect through the longitudinal process (e.g., an effect
that increases over a period of time) may be advantageous.

Let ξ = (γ , λ,β, α,�θ) denotes the complete set of fixed effect parameters and θ = (θ 1, ..., θ n) denote
the collection of random effect vectors for the set of n patients enrolled in the trial. We denote the observed
data for the complete set of n patients by D. Suppose patient i = 1, ..., n has the longitudinal outcome
measured mi times, denoted by ti1, ..., timi . We let yij = yi(tij) and Xij = X i(tij) denote the observed outcome
and covariate process at time tij, respectively, for j = 1, ..., mi. The complete data likelihood L(ξ , θ |D) is
written as

L(ξ , θ |D) =
n∏

i=1

[
mi∏

j=1

f (yij|Xij, θ i, γ , σ 2)

]
f (si, δi|zi, θ i, γ , λ,β, α)f (θ i|�θ), (2.3)

where the density for the time-to-event endpoint takes the form

f (si, δi|zi, θ i, γ , λ,β, α) = {
λ0(si) exp

(
βμi(si)+ xiαx + zT

i αz

)}δi
× exp

{
−

∫ si

0
(λ0(t)e

βμi(t)+xiαx+zT
i αz )dt

}
,

where si is the observation time and δi is an indicator for whether an event is observed for the ith patient.
Integrating over the random effects θ i for i = 1, ..., n gives the observed data likelihood

L(ξ |D) =
n∏

i=1

∫ ∞

−∞

[{
mi∏

j=1

f (yij|Xij, θ i, γ , σ 2)

}
f (si, δi|zi, θ i, γ , λ,β, α)f (θ i|�θ)

]
dθ i, (2.4)

which cannot be computed in closed form.

2.2. Piecewise linear time trajectory function

As noted above, Zhang and others (2016) propose a model for the longitudinal process that takes g(t) to
be a polynomial vector. Indeed, this is a common practice for these types of models (Chen and others,
2011; Crowther and others, 2013). For our approach, we assume a continuous, semiparametric, piecewise
linear time trajectory function for g(t) which is constructed using a pre-specified number of segments
with specified knot (or change point) locations. This approach is advantageous because it allows for a
more flexible shape for the time trajectory. For example, a piecewise linear curve allows for the possibility
that the trajectory levels off at some point in time whereas commonly used linear or quadratic polynomial
trajectory functions cannot accommodate this behavior.

We assume a piecewise linear trajectory function with M components and M − 1 knots denoted by
k1, ..., kM−1 which satisfy k0 = 0 < k1 < · · · < kM−1 < kM = ∞. Define the M + 1 dimensional vector
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Bayesian design using joint models 595

Fig. 1. Causal diagram for the treatment effect on the time-to-event outcome. T, treatment effect; L, longitudinal
outcome; E, time-to-event outcome.

g(t) to have 1 as its first component and fm(t) = max {min{t, km} − km−1, 0} as its (m + 1)th component
for m = 1, ..., M (i.e., g(t)T = [1, f1(t), . . . , fM (t)]). It is easy to see based on this construction that g(t) is
a continuous piecewise linear function of time. Based on this, one can see that the first components of θ i,
γ t , and γ x correspond to intercept parameters and the remaining M components of each vector combine
to determine each patient trajectory’s slope over the M time intervals in the time axis partition.

2.3. Direct and indirect treatment effects

As mentioned above, the proposed joint model allows for the treatment to have both direct and indirect
effects on the time-to-event outcome. We refer to αx in (2.2) as the direct effect of treatment on the time-
to-event endpoint. In the proposed joint model, we have assumed that the direct effect is consistent with a
proportional hazards assumption. The indirect effect of treatment is βg(t)T γ x which can be decomposed
as the effect of treatment on the longitudinal outcome g(t)T γ x multiplied by the effect of the longitudinal
outcome on the time-to-event outcome β. Here, we note that the causal interpretation of the indirect
treatment effect follows from the assumption that μi(t) = g(t)T θ i + X i(t)T γ is the true trajectory for
patient i with εi(t) corresponding to measurement error for the longitudinal outcome at time t.

Figure 1 provides a simple illustration of the causal diagram. There are several possibilities for how
the treatment could impact the time-to-event distribution. The treatment could have only a direct effect
(αx �= 0,βg(t)T γ x = 0), only an indirect effect (αx = 0,βg(t)T γ x �= 0), or both types of effects. The
proposed formulation of the joint model is ideal for cases where both direct and indirect effects are
plausible and where it is of interest to design a future trial with a goal of identifying their contribution to
the total treatment effect.

2.4. Study design

We consider a study design where the goal is to demonstrate the superiority of an investigational treatment
to control with respect to a time-to-event endpoint such as PFS. While it is of interest to make a global
statement of the effectiveness of treatment, quantification of both direct and indirect effects is of interest.
We assume that the longitudinal outcomes are measured at baseline and follow-up time points scheduled
at regular intervals until some fixed time ttraj. Patients are followed for the time-to-event endpoint starting
at baseline and up to time tmax corresponding to a random point in time when a specified number of events
have accrued in the trial. Let h1(t) and h0(t) be the hazards for comparable patients in the treatment and
control groups. Here, comparable implies that although the patients are treated differently, their random
effects and baseline covariate vectors are equal.

We define the one-sided null and alternative hypotheses for superiority as: H0 : φ(t0) ≥ 1 versus H1 :

φ(t0) < 1, where φ(t0) = G−1
(∫ t0

0 G
(

h1(t)
h0(t)

)
�(t)dt

)
for fixed t0 with ttraj ≤ t0 ≤ tmax, G(x) is a strictly

increasing function, and �(t) is a non-negative weight function such that
∫ t0

0 �(t)dt = 1. The quantity
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596 J. XU AND OTHERS

φ(t0) is thus derived using a very general framework for computing an average for a time-varying hazard
ratio (Chen and others, 2015).

Chen and others propose and discuss choices for G(x) such as G(x) = x, which gives an identity
transformation such that φ(t0) = ∫ t0

0
h1(t)
h0(t)

�(t)dt, and G(x) = log(x). For this article, we consider G(x) =
log(x) for several reasons. First, for this choice, when the log hazard and weight functions are piecewise
linear functions in time, φ(t0) has a closed form. Second, φ(t0) is symmetric in h1(t) and h0(t) (i.e.,
φ (h0/h1) · φ (h1/h0) = 1). Lastly, φ(t0) can be decomposed into two components corresponding to the
direct and indirect effects, respectively (Section 2.5). For more discussion on choices for G(x), we refer
the reader to Chen and others (2015).

We propose the weight function defined by �(t) ∝ |βg(t)T γ x + αx|, where βg(t)T γ x + αx can be
viewed as the difference in log hazards for two comparable subjects. Technically, �(t) is only a proper
weight function when βγ x and/or αx is non-zero. In practice, being a function of unknown parameters,
�(t)must be estimated from the data and so the estimated weight function will likely never be identically
zero. Nonetheless, is it reassuring to add a small positive constant (e.g., c0 = 0.001) to the weight function
in software implementations to avoid any instability issues that might arise should such a pathological
dataset arise. Such an approach was taken in our software implementation. Note that the weight function
�(t) is directly incorporated into φ(t0) to define the function of ξ that serves as the basis for inference. In
other words, �(t) is not treated as fixed based on a plug-in type estimator.

2.5. Decomposition of φ(t0)

When G(x) = log(x), for the log hazard in (2.2) and for the arbitrary weight function �(t), it is
straightfoward to show that

φ(t0) = exp
{∫ t0

0
αx�(t)dt

}
exp

{∫ t0

0
βg(t)T γ x�(t)dt

}
= eαx exp

{∫ t0

0
βg(t)T γ x�(t)dt

}
,

where φD = eαx is the direct effect contribution to the average hazard ratio and φI =
exp

{∫ t0
0 βg(t)T γ x�(t)dt

}
is the indirect effect contribution. Note that φD does not depend on time or the

weight function �(t), whereas the value of φI depends on both. Thus, changing �(t) will only affect the
indirect effect contribution φI to the average hazard ratio.

2.6. Arbitrary G(x) and �(t) functions

In addition to the specific choices for G(x) and �(t) discussed previously, one can approximate φ(t0) for
arbitrary choices using a trapezoidal approximation to the integral. Consider a partition of the interval
(0, t0) into K intervals and let 0 = s0 < s1 < ... < sK = t0 withk = sk − ts−1 corresponding to the width
of interval k . Then we have

φ(t0) ≈ G−1

[
K∑

k=1

1

2
k

{
�(sk−1)G

(
h1(sk−1)

h0(sk−1)

)
+�(sk)G

(
h1(sk)

h0(sk)

)}]
. (2.5)

Thus, assuming one can fit the model to estimate π(ξ |D), the posterior distribution π(φ(t0)|D) can be
readily estimated by applying the approximate transformation in (2.5) which can be made arbitrarily
accurate by taking K to be large.
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2.7. Model estimation and posterior inference

Even though the observed data likelihood L(ξ |D) in (2.4) cannot be computed in closed form, it is
straightforward to estimate π(ξ |D) using Markov chain Monte Carlo (MCMC) methods to sample from
π(ξ , θ |D), based on the complete data likelihood in (2.3). The samples for ξ can then be used to approximate
π(ξ |D). Rizopoulos (2016) developed an R package, JMBayes, for fitting joint models using MCMC
methods. That software provides a suite of commonly used priors and a flexible framework for modeling
the baseline hazards. We refer the reader to the article by Rizopoulos (2016) for more specific details on
the implementation.

Due to the substantial computational burden of using MCMC for large scale simulation studies, we
use a posterior approximation for inference during design simulations. Using the observed data likelihood
L(ξ |D), the posterior distribution for the fixed effects takes the form π(ξ |D) ∝ L(ξ |D)π(f )(ξ), where
π(f )(ξ) is the fitting prior (Wang and Gelfand, 2002). When there is little prior information on ξ , the
fitting prior is generally specified to be non-informative, and can be an improper prior as long as π(ξ |D)
is proper. We use standard software (e.g., The NLMIXED Procedure) to obtain an asymptotic poste-
rior approximation for π(ξ |D) based on the Bayesian central limit theorem (Chen, 1985). Specifically,
π(ξ |D) ≈ Normal(ξ̂ , �̂ξ ) , where ξ̂ and �̂ξ , respectively, are the maximum likelihood estimator (MLE)
and approximate asymptotic covariance for the MLE, obtained by maximizing the approximate observed
data likelihood obtained by integrating over the θ i using Gaussian Quadrature. When φ(t0) has a closed
form or is approximated by (2.5), application of the delta method (Doob, 1935) yields an approximate
posterior for π(φ(t0)|D) ≈ Normal(φ̂(t0), σ̂ 2

φ ), where φ̂(t0) and σ̂ 2
φ are the MLE and estimated asymptotic

variance of φ(t0), respectively. It follows that P(φ(t0) < 1|D) ≈ 1 −�
(
φ̂(t0)−1
σ̂φ

)
.

An appealing alternative approximation for π(φ(t0)|D) for the case when G(x) and �(t) do not yield
a closed form for φ(t0) can be obtained using Monte Carlo methods as follows. First, one must obtain
samples ξ (1), ..., ξ (M ) from π(ξ |D) based on the asymptotic approximation above. One can then compute
φ(m)(t0) = φ(t0|ξ (m)) using (2.5) to obtain the approximate posterior. Calculation of posterior probabilities
is based on the fraction of samples meeting the desired criterion (i.e., φ(t0) < 1).

2.8. Bayesian sample size determination

The proposed method is designed to facilitate identification of the smallest sample size required for a trial,
subject to Bayesian type I error rate and power requirements. Following Psioda and Ibrahim (2018, 2019),
we define the Bayesian type I error rate and power using user-specified null and alternative sampling prior
distributions for ξ , respectively. In our context, the null sampling prior gives non-zero weight to values
of ξ such that φ(t0) ≥ 1 and the alternative sampling prior such that φ(t0) < 1. For this article, we only
consider point-mass sampling priors such that π(s)0 (ξ) = 1(ξ = ξ 0) and π(s)1 (ξ) = 1(ξ = ξ 1), where
the superscript (s) indicates that the prior is a sampling prior, the subscript h indicates whether the prior
corresponds to a null (h = 0) or alternative (h = 1) sampling prior, and 1{A} is an indicator that A is
true. In the case of point-mass sampling priors, the Bayesian type I error rate and power align with the
frequentist versions.

Let α(s) and β(s) denote the Bayesian type I and II error rates. Prespecify p0 as the threshold for
substantial evidence such that we reject the null hypothesis if P(φ(t0) < 1|D) ≥ p0. For a fixed
value of ξ , the null hypothesis rejection rate is defined as r(ξ) = E[1{P(φ(t0) < 1|D) ≥ p0}|ξ ],
where the expectation is with respect to the distribution of D given ξ . The Bayesian type I error
rate and power are defined as α(s) = E[r(ξ)|π(s)0 ] and 1 − β(s) = E[r(ξ)|π(s)1 ], which, for non-
degenerate sampling priors, are weighted averages of r(ξ)with weights determined by π(s)0 (ξ) and π(s)1 (ξ),
respectively.
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598 J. XU AND OTHERS

2.9. Simulation-based sample size determination

We propose using simulations to identify the required number of events (effectively the sample size in
time-to-event trials) such that the trial design has sufficiently high Bayesian power. The number of patients
enrolled in the trial may be chosen to obtain a specified number of events in a specified interval of time
on average. Let the sample size and number of events be given by n and v, respectively. We consider an
approach that fixes the ratio r = n

v but varies the number of events. If n1 patients result in obtaining v1

events in a specific time frame, then to obtain v2 ≥ v1 events in the same time frame, one should increase
n2 proportionally. By fixing r, we ensure that the trial will complete in a reasonable period of time which
may be desirable to limit extrapolation of trajectories (unless longitudinal outcome assessment continues
for the duration of follow-up).

We want to determine the smallest v such that the Bayesian power for the design is at least 1 − β(s). A
simulation-based sample size determination procedure is given below:

S1. Let v1, ..., vK denote the potential event totals at which the trial might be stopped.
S2. Initialize k = 1.
S3. Compute the Bayesian power 1 − β

(s)
k based on vk .

S4. If 1 − β
(s)
k ≥ 1 − β(s) then set v = vk and stop; otherwise, increment k and return to S3.

Note that the approximate Bayesian type I error rate will be α(s) when one takes p0 = 1 − α(s) for the
case where point-mass null sampling priors are used (along with a non-informative fitting prior). Thus,
for the identified choice of v, it will generally be the case that α(s) ≈ 1 − p0 and so specific efforts to
control the Bayesian type I error rate at level α(s) are not generally needed when p0 is chosen in this way.
Nonetheless, one can always compute the exact Bayesian type I error rate via simulation to ensure it is
sufficiently close to the desired nominal level. The simulations studies presented in Section 3 illustrate
that the property α(s) ≈ 1 − p0 indeed holds quite well.

Now we expound more on step S3 from the simple algorithm given above. Letting B be the number of
simulation studies to be performed, to estimate the Bayesian power 1 − β

(s)
k associated with event total

vk , one does the following:

S3.1 Sample ξ (b) from the alternative sampling prior π(s)1 (ξ).

S3.2 Simulate the observed data D(b).

S3.3 Estimate the posterior distribution π(φ(t0)|D) using an approach described in Section 2.7 and
compute the null hypothesis rejection indicator

r(b) = 1{P(φ(t0) < 1|D(b)) ≥ p0}.

S3.4 Approximate the Bayesian power:

1 − β
(s)
k ≈ 1

B

B∑
b=1

r(b).

See Appendix A of the Supplementary material available at Biostatistics online for an algorithm that can
be used to generate the observed data D(b) as required for step S3.2 above.
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3. EXAMPLE APPLICATION: BAYESIAN CLINICAL DESIGN FOR BREAST CANCER

Our design methodology is motivated by a breast cancer trial undertaken by the International Breast Can-
cer Study Group (IBCSG) (IBCSG, 1996). The trial, IBCSG Trial VI, was conducted in pre-menopausal
women with node-positive breast cancer to investigate the efficacy of different durations of adjuvant
chemotherapy (3 versus 6 cycles of CMF—cyclophosphamide, methotrexate, and fluorouracil) and
whether the reintroduction of CMF provided added benefit. Treatment strategies were evaluated with
respect to the OS and DFS endpoints. During the study, four measures of QOL (appetite, mood, coping,
physical well-being) were scheduled to be collected at baseline and every 3 months for up to 2 years
(Hürny and others, 1992).

For our example application, we consider the design of a similar trial evaluating two treatments (e.g.,
whether or not chemotherapy was reintroduced) with respect to a primary PFS time-to-event endpoint. We
consider one QOL measure (e.g., coping score) in this application. Similar to IBCSG Trial VI, we assume
QOL scores are collected every 3 months starting at baseline for up to 2 years, and that these scores are
approximately normally distributed (after appropriate transformation, e.g., a square root transformation
as was done in Zhang and others (2016)). In the simulated trials, patients were randomized to the two
treatments using a 1:1 allocation scheme. Patient accrual was simulated to be uniform over a 1-year
period and censoring (i.e., dropout) was assumed to follow a mixture distribution whereby patients had
probability ρ = 0.05 of dropping out of the trial early and, conditional on being a dropout, the time to
dropout was simulated to be uniform over a 5-year period. All patients were administratively censored
when the desired number of events for the simulated trial was reached. This resulted in approximately 66%
of patients having a censored time-to-event outcome on average with the dominant type of censorship being
administrative censoring (consistent with the IBCSG data). In Appendix B of the Supplementary material
available at Biostatistics online, we explore the impact of increased rates of non-informative dropout and
its impact on the Bayesian type I error rate and power. Therein, we compare design properties based on
ρ ∈ {0.05, 0.10, 0.20} and the results show that the design method we propose is robust even under a
substantial degree of non-informative dropout. In IBCSG Trial VI, the number of positive lymph nodes
identified for lymphadenectomy was prognostic of PFS and so we included a binary covariate (> 3 versus
≤ 3 nodes) in our hypothetical trial simulations. The covariate was simulated such that approximately
50% of the subjects were in the more severe group.

We assumed a piecewise linear trajectory function with a longitudinal process for patient i given by
μi(t) = θi + g(t)T γ t + xig(t)T γ x + γzzi, where zi is an indicator that the patient had > 3 positive lymph
nodes. In design simulations, we considered a four-component piecewise linear trajectory function with
knots at 0.25, 0.75, and 1.25. For the baseline hazard, we considered a five-component piecewise constant
function with knots at times 1.91, 2.43, 3.00, and 3.80. Knot placement was determined such that each
component of the trajectory and hazard had approximately the same number of longitudinal measures and
events, respectively. In fitted models, the knot placements were assumed to be known.

For the construction of φ(t0), we took t0 = 5 which was equal to the approximate expected duration of
the trial and G(x) = log(x) leading to a closed form for φ(t0) as described in Section 2.4. We considered
various sampling priors for the treatment effect and association parameters. For the association parameter,
we considered point-mass priors on β ∈ {−0.15, −0.30, −0.45}. For the direct treatment effect, we
considered point-mass priors on αx ∈ {0.0, −0.2}. Due to the randomized nature of the trial, we only
considered γx,0 = 0.0. For the treatment effect on the longitudinal process, we considered point-mass
priors on the four slope parameters

{
γx,1, ..., γx,4

}
including {0.0, 0.0, 0.0, 0.0} (no effect), {0.2, 0.2, 0.2, 0.2}

(favorable linear trajectory), and {0.4, 0.3, 0.2, 0.1} (decreasing effectiveness over time). Appendix C of
the Supplementary material available at Biostatistics online provides an explanation regarding how one
can determine whether a combination for

(
β,αx, γ x

)
combine to determine whether a given sampling

prior corresponds to a null or alternative scenario. The nuisance parameter values were taken to equal the
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Table 1. Control group parameter estimates for IBCSG data.

Parameter estimates

Approximate
Parameter description Parameter Posterior mode SD 95% credible region

Covariance parameter estimates

SD for random intercept �θ 0.71 0.02 (0.68, 0.75)
Standard deviation σ 0.66 0.01 (0.64, 0.67)

Longitudinal parameter estimates

Intercept γt,0 0.27 0.05 (0.17, 0.36)
Node group γz −0.03 0.05 (−0.14, 0.07)
Time trajectory(γt,1-γt,4) γt,1 −0.32 0.19 (−0.68, −0.05)

γt,2 −0.72 0.10 (−0.93, −0.52)
γt,3 −0.14 0.11 (−0.35, 0.07)
γt,4 −0.22 0.28 (−0.77, 0.34)

Survival parameter estimates

Node group αz 0.77 0.11 (0.55, 0.98)

Baseline hazard

log λ1 −3.61 0.14 (−3.90, −3.33)
log λ2 −2.22 0.15 (−2.51, −1.93)
log λ3 −2.25 0.15 (−2.55, −1.95)
log λ4 −2.50 0.16 (−2.82, −2.18)
log λ5 −2.70 0.18 (−3.05,−2.35)

Notes: Posterior quantities are computed based on a Laplace approximation to the posterior.

approximate posterior modes based on our analysis of the IBCSG data as shown in Table 1. To identify
the desired number of events required to achieve Bayesian power equal to 0.8, we considered v = 100
to 400 in increments of 25. A total of 4000 simulated trials were performed to estimate the operating
characteristics for each choice of sampling prior size was considered.

We evaluate the performance of the proposed method in two types of scenarios: one where the joint
model is correctly specified and another where some type of misspecification exists. Section 3.1 compares
the performance of the proposed method with other methods when the joint model is correctly specified.
Sections 3.2 and 3.3 demonstrate the robustness of the proposed method in scenarios where the joint model
trajectory function and the random effect structure are misspecified, respectively.

3.1. Evaluation of the joint model when correctly specified

We evaluated the performance of the proposed joint model against a simplified joint model that omits the
random effects (θi = 0), a Cox proportional hazards model, and the log-rank test. Note that, due to the
correlated nature of longitudinal outcomes, patient-level heterogeneity will essentially always exist and
so the simplified joint model should not be viewed as a competitor of the joint model which includes
random effects. We merely included the simplified version to assess the impact of ignoring patient-level
heterogeneity in an otherwise correctly specified model. Estimates of power based on the different methods
are shown in Figures 2 and 3. Figure 2 presents power when there is no direct effect (i.e., αx = 0). Figure 3
presents power when there is only a direct effect (column 1) and both direct and indirect effects (columns
2 and 3). In Appendix D of the Supplementary material available at Biostatistics online, to help the reader
appreciate how direct and indirect effects manifest differences in survival curves, we present and compare
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Bayesian design using joint models 601

Fig. 2. Estimated power curves for no direct effect case (i.e., αx = 0). PH = proportional hazards.

curves for selected scenarios where there is only a direct effect, only an indirect effect, and where there
are both types of effects.

All four analysis methods provide Bayesian type I error control at approximately the nominal level (i.e.,
α(s) = 0.05), regardless of the strength of the association parameter (Figure 2, column 1). A comparison
of the power curves illustrates that the joint model always outperforms the standard log-rank test. When
there is no indirect treatment effect (Figure 3, column 1), the power difference between the joint model and
the proportional hazards model is modest, but increases as the association parameter increases in absolute
value, reflecting the degraded performance of the proportional hazards model due to failing to capture
patient heterogeneity. This suggests that power based on the joint model is as high as that based on the
proportional hazards model even when the proportional hazards assumption holds. Columns 2 and 3 in
both of Figures 2 and 3 illustrate that the joint model has significantly higher power than the proportional
hazards model when there is a moderate or large indirect treatment effect.

Figure 3 (e.g., panel in row 2 and column 3) illustrates that the joint model that omits the random effect
sometimes yields lower power compared to the proportional hazards model even though it is otherwise
correctly specified. This phenomenon is not exhibited by the joint model that correctly accounts for the
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Fig. 3. Estimated power curves when the direct treatment effect αx = −0.2. PH = proportional hazards.

random effect. While these results demonstrate the importance of accounting for patient-level hetero-
geneity in the joint model, one should not construe them to imply the random effect structure in the joint
model must be correct to gain efficiency through the use of that modeling technique. Indeed, the results we
present in Section 3.3 illustrate the robustness of the proposed joint model when patient-level heterogene-
ity is accounted for in the analysis—but accounted for incorrectly. Performance of the joint model suffers
unduly only when patient-level heterogeneity is ignored in the model (i.e., when independence between
the longitudinal outcomes and time-to-event outcomes is assumed) or is not present in the data generation
process. In Appendix E of the Supplementary material available at Biostatistics online, we explore the
impact of patient-level heterogeneity on the performance of the joint model in more depth. Specifically,
we generate data assuming varying different degrees of patient-level heterogeneity, including a case with
no heterogeneity which is mainly included for pedagogical purposes. From the results of that Appendix of
the Supplementary material available at Biostatistics online, one can see that the estimates from the joint
model can be biased when there is no patient-level heterogeneity or when it is assumed to be the case
(i.e., by fitting the simplified joint model) even when patient-level heterogeneity does exist. More specific
details can be found in that Appendix of the Supplementary material available at Biostatistics online.
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In this section, we present results based on a correctly specified joint model. We also considered the
performance of the joint model in the presence of overfitting (i.e., fitting an overly complex joint model that
contains the true model). In Appendix F of the Supplementary material available at Biostatistics online, we
present simulations that illustrate power based on the joint model is quite robust to overfitting the baseline
hazard, trajectory function, or both. As shown in the Appendix of the Supplementary material available
at Biostatistics online, power does decline as the degree of overfitting increases. However, the decrease
relative to the difference in power compared to the proportional hazards model is modest, suggesting
that practitioners can be comfortable fitting a relatively complex joint model (i.e., one with 4 or more
components in the trajectory) without concern (provided sufficient longitudinal outcomes are measured
to support estimation of the trajectory).

Lastly, we note that modeling the baseline hazard using a piecewise constant function (Ibrahim and
others, 2001) is well-established and provides a robust approximation to the underlying true baseline
hazard. Nonetheless, a modification of our approach that more flexibly models the baseline hazard as a
piecewise linear function (as we have done for the trajectory function) is straightforward and does not
affect mathematical results presented earlier.

3.2. Performance of the joint model under trajectory misspecification

In this section, we present results from an investigation into the impact of trajectory function misspecifi-
cation on the performance of the joint model. For this investigation, we compared power based on fitting a
joint model using the correct trajectory function to power based on one that had a misspecified trajectory
function. Figures 4 and 5 show the estimated Bayesian power curves based on fitting both models. The
corresponding correct and average fitted trajectories for the two treatment groups are shown alongside the
graphs presenting the operating characteristics. We considered two different scenarios for the trajectory
functions: one scenario where the trajectory for the treated group increases initially but levels off over time
and another scenario where the treated group trajectory increases initially and subsequently decreases.
For simplicity, both scenarios incorporate a flat trajectory for the control group. The misspecified model
approximated the correct six-component piecewise linear trajectory with a model that only included three-
components. Figures 4 and 5 present the estimated power curves (column 1) under the two scenarios. The
power estimates based on the misspecified models are nearly identical to those based on the true models
for both cases. Figures 3 and 4 in Appendix G of the Supplementary material available at Biostatistics
online present the estimated Bayesian type I error rate curves for scenarios where both treated and control
group trajectories match the treated group trajectories in Figures 4 and 5, respectively. The nearly identical
curves suggest that the misspecified model provides a well-controlled Bayesian type I error rate in the
presence of model misspecification.

Recalling the discussion from Section 3.1 regarding the robustness of the joint model to overfitting, we
offer practitioners the following advice. First, for design simulations, the use of a parsimonious trajectory
function in order to compute power is reasonable. Using a parsimonious (but still realistic) trajectory
function can greatly decrease the computational burden of large-scale simulation studies. Second, the
analysis model used for real data analysis can make use of a more flexible trajectory function without
great concern for the degradation of the design’s operating characteristics.

3.3. Performance of the joint model under random effect misspecification

In Section 3.1, we considered a joint model that (correctly) included a random intercept to account for
individual heterogeneity. In practice, the random effects structure needed to optimally model patient-level
heterogeneity may be more complex (e.g., random slopes may be needed). In this section, we evaluate
the performance of the proposed joint modeling framework in cases where only a random intercept
is assumed, where random effects are omitted, and where a more complex random effects structure is
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Fig. 4. Estimated power curves based on fitting the true and misspecified models. In this scenario, the trajectory
function for the treated group increases initially but levels off over time.

correctly modeled. For this purpose, we generated the data assuming both a random intercept and random
trajectory slope. Models with relatively simple random effect structures (e.g., only a random intercept or
none) are misspecified. Figure 6 presents the estimated Bayesian type I error rate and power curves for
scenarios where the random slope (common to each trajectory component) has ω = 0.25 and ω = 0.50
times the standard deviation of the random intercept. For simplicity, we assumed independence between
the two random effects. The estimated type I error rate curves suggest that the misspecified models provide
a well-controlled Bayesian type I error rate in the presence of random effects misspecification. The power
estimates based on the misspecified model with only a random intercept are nearly identical to those
based on the true models for both choices for ω whereas the model that entirely omits the random effects
performs worse. In particular, the model that omits the random effects entirely has lower power compared
to the proportional hazards model as previously observed. This underscores the point previously made
that the joint model is robust to misspecification of the random effects structure provided one does not
assume there is no patient-level heterogeneity.

4. DISCUSSION

For the joint model used in the example application, we assumed that the longitudinal process maintains
the same trajectory after the collection of the longitudinal measurements ceases. Thus, the trajectory is
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Fig. 5. Estimated power curves based on fitting the true and misspecified models. In this scenario, the trajectory
function for the treated group increases initially and subsequently decreases.

effectively extrapolated from the point of the last measurement of the longitudinal outcome until the
observation period ends. This may be problematic if the period of elapsed time is substantial. If data
suggest a change in the trajectory may occur near the time when assessment of longitudinal outcome ends,
it may be necessary to modify the hazard model to prevent erroneous extrapolation of the trajectory. Zhang
and others (2016) provide some discussion on techniques for how the hazard function may be modified to
address instances where the hazard ceases to follow the trajectory estimated based on the period of time
over which the longitudinal outcome is measured. In an ideal setting, researchers will collect longitudinal
outcomes over the period [0, t0], even if the frequency of collection lessens over time for logistics reasons.
This will avoid having to extrapolate the trajectory altogether. Nonetheless, a key reason for modeling
the time trajectory as a piecewise linear function instead of say, a linear or quadratic polynomial, is to
allow the behavior of the trajectory near the period of time over which it must be extrapolated to be more
strongly influenced by the recent longitudinal outcome measures.

When computing the average of the time-varying hazard ratio, we considered a function φ(t0) using
hazards for comparable treated and control patients having the same random effect values. An alternative
formulation can be derived by averaging over the random effects. Note that φ (t0) can be written more
generally as φ (t0, ξ , θ) to more explicitly indicate its dependence on ξ and θ . One can define ψ (t0) =
1/n

∑n
i=1 φi (t0, ξ , θ i) to represent the average time-varying hazard ratio further averaged over the patient-

specific random effects. The posterior distribution for ψ (t0) can be readily computed by using MCMC
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Fig. 6. Estimated type I error rate and power curves based on fitting the true and misspecified models. The joint
model with a random intercept and slope is the true model. Both the joint model with only a random intercept and the
simplified joint model are misspecified.

methods to obtain samples from the posterior distribution π
(
ξ , θ

∣∣D)
and then calculating ψ (t0) for each

sampled value of (ξ , θ). The relative merits of performing inference using φ (t0) versus ψ (t0) is a topic
of future research for the authors.

For the sampling priors used in the example application, we used point-mass sampling prior distributions
based on parameter estimates from an analysis of the IBCSG data. More generally, the Bayesian framework
for power and type I error evaluation is applicable for non-degenerate sampling priors on the parameters
as well. For a more extensive discussion on the use of non-degenerate sampling priors for computing
Bayesian power and type I error rates, we refer the readers to the recent work of Psioda and Ibrahim
(2018, 2019) and the references cited therein.

In the joint model setting, even for point-mass sampling priors, choosing the sampling priors can be
challenging. The authors would give the following general advice. As was done with the IBCSG data in
our example application, where such data are available, using existing data to inform choices for nuisance
parameters is recommended even if the available data are not a perfect fit for the problem at hand. Where
little information is available on covariate effect sizes, the associated covariates need not be considered
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Bayesian design using joint models 607

in design simulations but can still be pre-specified for inclusion in the analysis model based on scientific
rationale. If preliminary data are available regarding the treatment’s effect on the longitudinal outcome
(e.g., from phase I studies), these data can be used to construct a plausible trajectory model reducing the
problem to having to hypothesize values for the association parameter β. In the absence of any data to
inform the sampling priors, as with any sample size determination problem, one will need to explore a
variety of sampling priors that cover a range of plausible “true” alternatives and ensure the chosen sample
size is sufficient over that set of alternatives.

The design methodology developed in the article is for a single, continuous longitudinal outcome. It
may be extended to two or more longitudinal outcomes (continuous and/or discrete), but the relationships
between different longitudinal outcomes and the construction of a causal pathway need to be carefully
considered. Extending the proposed framework to allow for multiple types of longitudinal outcomes is a
topic for future research for the authors.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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