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Summary

There has been increased interest in the design and analysis of studies consisting of
multiple response variables of mixed types. For example, in clinical trials, it is desir-
able to establish efficacy for a treatment effect in primary and secondary outcomes. In
this paper, we develop Bayesian approaches for hypothesis testing and study planning
for data consisting of multiple response variables of mixed types with covariates. We
assume that the responses are correlated via a Gaussian copula, and that the model
for each response is, marginally, a generalized linear model (GLM). Taking a fully
Bayesian approach, the proposed method enables inference based on the joint pos-
terior distribution of the parameters. Under some mild conditions, we show that the
joint distribution of the posterior probabilities under any Bayesian analysis converges
to a Gaussian copula distribution as the sample size tends to infinity. Using this result,
we develop an approach to control the type I error rate under multiple testing. Sim-
ulation results indicate that the method is more powerful than conducting marginal
regression models and correcting for multiplicity using Bonferroni-Holm Method.
We also develop a Bayesian approach to sample size determination in the presence
of response variables of mixed types, extending the concept of probability of success
(POS) to multiple response variables of mixed types.
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1 INTRODUCTION

There has been increased interest in jointly analyzing data, particularly of mixed types. For example, in clinical trials, it is
common to measure multiple response variables (i.e., clinical outcomes) per subject, which may be continuous, binary, or a count,
among others. Although these outcomes are known to be dependent, mixed data types are typically analyzed using marginal
models, i.e., ignoring dependence between the response variables. Hypothesis testing in the presence of multiplicity involves
computing adjusted 𝑝-values from these marginal models. Existing approaches to account for multiple comparisons, such as the
Bonferroni-Holm method1, may have conservative type I error rates under positive dependence and, hence, suboptimal power.
Consequently, studies utilizing marginal models require larger sample sizes to achieve a desired level of power than would be
required if the correlations were taken into account.

In this paper, we propose to model responses of mixed types using a Gaussian copula to account for dependence between
response variables. We focus specifically on the vector generalized linear model2. Because any copula may be utilized to model

0Abbreviations: APP, asymptotic power prior FWER, family-wise error rate; GC, Gaussian copula; GLM, generalized linear model HMC, Hamiltonian Monte Carlo .
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the dependence between response variables, we refer to the model as the Gaussian copula generalized linear model (GCGLM)
to avoid ambiguity. In order to incorporate uncertainty surrounding parameter values and because frequentist inference of the
GCGLM is unstable in the presence of multiple discrete response variables3,4, we focus on Bayesian inference. Importantly, the
Bayesian joint modeling approach enables inference on the joint posterior distribution of the parameters of interest, and we show
that the asymptotic joint distribution of posterior probabilities under the null hypothesis, and under some mild conditions, is
itself a Gaussian copula when the model is correctly specified. Utilizing the joint asymptotic distribution, we develop a Bayesian
approach to hypothesis testing that asymptotically guarantees a family-wise error rate (FWER) of precisely level 𝛼 (i.e., the
FWER is not conservative). We further develop a step-down procedure similar to the Bonferroni-Holm procedure to ascertain
which hypotheses may be rejected.

We further show how the GCGLM may be utilized to determine sample size using a multivariate version of probability of
success (POS)5, which is also called assurance6. The proposed method enables practitioners to plan a study that yields, for
example, a high probability to reject a null hypothesis corresponding to a parameter of primary interest and at least one null
hypothesis corresponding to multiple parameters of secondary interest. In clinical trials, for example, regulators suggest that
studies be planned to provide adequate power for tests of both the primary and secondary endpoints, across which the type I
error rates must be controlled. However, this is seldom done in practice, in part due to the lack of familiarity of statistical tools
that can jointly model response variables, which allow for the generation of future trial data of mixed types that are correlated.

The rest of the paper is organized as follows. In Section 2, we review some Frequentist and Bayesian approaches for the
multiple comparisons problem. In Section 3, we introduce the GCGLM and discuss prior elicitation, where we develop priors for
the GCGLM in the contexts of no prior information (i.e., a noninformative prior) and when a similar, previous study is available,
using an approximation to the power prior7, known as the “asymptotic power prior”8. In Section 4, we show that the asymptotic
distribution of the posterior probabilities under the null hypothesis follows a Gaussian copula. Exploiting this fact, we develop
a Bayesian approach to hypothesis testing that provides type I error control at exactly level 𝛼. In Section 5, we develop a method
to compute probability of success (POS) to robustly determine the sample size in the presence of multiple response variables
of mixed types. In Section 6.2, we present results from an extensive simulation study showing the type I error rates and power
for our proposed analysis method and compare it with the Bonferroni-Holm procedure with analyses performed by marginal
GLMs. In Section 6.1, we apply our POS method to determine sample size for a future trial using a real historical data set. In
Section 8, we close with some discussion.

2 REVIEW OF METHODS HANDLING MULTIPLICITY

In this section, we review the multiple testing literature. Because the aim of this paper is to account for correlations between
outcomes (and, hence, dependence between tests), we focus mostly on methods that account for dependence between tests.
Throughout this section, we assume a statistical model is parameterized by a 𝐽 -dimensional vector 𝜽 = (𝜽1,𝜽2), where 𝜽1 =
(𝜃11,… , 𝜃1𝐾 )′ is a𝐾-dimensional vector consisting of the parameters of interest and 𝜽2 is a vector of dimension 𝐽−𝐾 containing
nuisance parameters. We assume a hypothesis test of the form 𝐻0 ∶ ∩𝐾

𝑘=1𝐻0𝑘 versus 𝐻1 ∶ ∪𝐾
𝑘=1𝐻1𝑘, where 𝐻0𝑘 = {𝜽 ∶ 𝜃1𝑘 =

𝜏𝑘} and 𝐻1𝑗 = {𝜽 ∶ 𝜃1𝑘 > 𝜏𝑘} and we suppose without loss of generality that 𝜏𝑘 = 0 for 𝑘 = 1,… , 𝐾 . In words, 𝐻0 is a global
null hypothesis stating that all parameters of interest are zero, and 𝐻1 is a global alternative hypothesis stating that at least one
of the parameters of interest is positive. Finally, we assume it is of interest not only to reject 𝐻0, but also to ascertain which
sub-hypotheses comprising 𝐻0 may be rejected while controlling the FWER, which is the probability of incorrectly rejecting
at least one null sub-hypothesis given that the global null hypothesis is true. We specify a type I error rate of level 𝛼. For
frequentist approaches, we let 𝑇𝑘 and 𝑝𝑘 denote, respectively, the test statistic and the 𝑝-value for testing the null hypothesis 𝐻0𝑘,
𝑘 = 1,… , 𝐾 .

One of the most utilized methods for multiplicity adjustment is the Bonferroni-Holm procedure1, which is advocated for use
by regulators in clinical trials9. The Holm method is a step-down approach that first orders the 𝑝-values in ascending order,
say, 𝑝(1),… , 𝑝(𝐾). If 𝑝(1) ≥ 𝛼∕𝐾 , the procedure terminates and 𝐻0 cannot be rejected. If 𝑝(1) < 𝛼∕𝐾 , then 𝐻0(𝑘) and hence 𝐻0
are rejected. The procedure continues, testing the null hypothesis 𝐻0(𝑘) only if 𝐻0(1),…𝐻0(𝑘−1) are rejected and rejects 𝐻0(𝑘) if
𝑝(𝑘) < 𝛼∕(𝐾−𝑘+1). The Holm procedure is uniformly more powerful (UMP) compared to the ubiquitous Bonferroni procedure,
which tests each null hypothesis at level 𝛼∕𝐾 . However, the Holm procedure ignores any correlations in the 𝑝-values, and can be
quite conservative when the parameters in the global null hypothesis exhibit positive dependence (see Figure 1 in the Supporting
Information for an illustration).
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In order to reduce the conservatism of the Holm procedure, step-down approaches utilizing resampling methods (e.g., a
bootstrap approach) have been proposed. One of the more popular methods, which we refer to as the Westfall-Young method,10

resampling the test statistics under 𝐻0 to estimate correlation under the null. However, the method relies on an assumption called
“subset pivotality,” i.e., that the distributions max𝑘∈𝐼 𝑇𝑘|𝐻

(𝐼)
0 and max𝑘∈𝐼 𝑇𝑘|𝐻0 are identical for every subset 𝐼 ⊂ {1,… , 𝐾},

where 𝐻 (𝐼)
0 = ∩𝑘∈𝐼𝐻0𝑘. The Westfall-Young method has been extended to allow for weaker assumptions11. Both methods lead

to a single decision rule (i.e., reject or do not reject), but the strength of evidence cannot be quantified. To improve on this, an
algorithm was developed to compute adjusted 𝑝-values based on the Westfall-Young method12. In addition, an empirical Bayes
(EB) resampling approach for false discovery rate (FDR) control was proposed13. In simple terms, resampling methods attempt
to approximate the joint distribution of the test statistics under the global null hypothesis 𝐻0, finding a critical value that depends
on the correlation of the test statistics. However, this process is somewhat counterintuitive since dependence is ignored in the
modeling stage, ultimately to try to recapture information on dependence in a post hoc fashion.

Recently, some approaches have focused on utilizing joint models to account for correlations in outcomes directly. Factor
analysis methods have been used to model correlations for the general linear model14. However, this method is not utilizable
when one is in possession of outcomes of mixed types. A Bayesian model averaging (BMA) approach has also been proposed15.
The BMA approach takes a weighted average of 𝑝-values and is shown to be UMP over the Bonferroni-Holm procedure. How-
ever, such an approach is a hybrid approach, taking frequentist 𝑝-values and casting them in a Bayesian light. Moreover, the
approach requires the elicitation of prior model probabilities, which may be subjective.

In addition to frequentist approaches, there have been advances in Bayesian approaches to multiplicity, which typically first
involve estimating a joint posterior distribution for the parameters of interest. A hierarchical Dirichlet process prior has been
proposed to account for correlations between parameters16. However, this method was only developed for normal response
variables. On the other hand, some suggest a shared random effect between outcomes of mixed types with the random effect
entering on the linear predictor scale17, but noted doing so can make it difficult or impossible to compare a resulting joint model
with the marginal models. Finally, a Bayesian approach for the multivariate normal model has been proposed using the Westfall-
Young method18. However, a general method for both jointly analyzing data of mixed types that provides an approach to control
FWER has, to our knowledge, not yet been developed. This paper fills this gap by (1) proposing a Bayesian joint modeling
approach that enables inference on outcomes of mixed types; and (2) deriving the asymptotic joint distribution of the posterior
probabilities under the global null hypothesis 𝐻0, exploiting the asymptotic distribution to develop a step-down procedure that
asymptotically guarantees FWER control at precisely level 𝛼.

3 BAYESIAN INFERENCE FOR GAUSSIAN COPULA GENERALIZED LINEAR MODELS

In this section, we review the Gaussian copula generalized linear model (GCGLM), which is a joint model for response variables
of mixed types. We discuss prior elicitation in the context of a single or two data set settings.

3.1 The GCGLM
Suppose we possess a data set where 𝐽 response variables are recorded per individual. That is, the data are 𝐷 =
{

(𝒚𝑖,𝒙𝑖), 𝑖 = 1,… , 𝑛
}

, where 𝒚𝑖 = (𝑦𝑖1,… 𝑦𝑖𝑗)′ is a 𝐽 -dimensional vector of response variables and 𝒙𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑝)′ is a 𝑝-
dimensional vector consisting of all covariates measured for subject 𝑖, . We assume that, marginally, 𝑦𝑖𝑗 is an observation from
a generalized linear model (GLM), i.e.,

𝑓𝑗(𝑦𝑖𝑗|𝜷𝑗 , 𝜙𝑖𝑗) ∝ exp
{

1
𝑎(𝜙𝑖𝑗)

[

𝑦𝑖𝑗𝜃𝑖𝑗 − 𝑏𝑗(𝜃𝑖𝑗)
]

+ 𝑐𝑗(𝑦𝑖𝑗 , 𝜙𝑖𝑗)
}

, (1)

where 𝜃𝑖𝑗 = 𝜃𝑗(𝒙′
𝑖𝑗𝜷𝑗) and 𝜃𝑗 is the 𝜃-link function for model 𝑗, 𝒙𝑖𝑗 is a 𝑝𝑗-dimensional covariate vector for subject 𝑖 and

outcome 𝑗, which may include an intercept term and some or all components of 𝒙𝑖, 𝜷𝑗 is a 𝑝𝑗-dimensional vector of regression
coefficients for outcome 𝑗, 𝜙𝑖𝑗 is a dispersion parameter (which may be fixed for some models), and the functions 𝑏𝑗 and 𝑐𝑗 index
the particular density or mass function for the GLM. For notational convenience, we assume 𝑎(𝜙𝑖𝑗) = 𝜙𝑖𝑗 = 𝜙𝑗 for 𝑖 = 1,… , 𝑛.

Let 𝒚𝑖 = (𝑦𝑖1,… , 𝑦𝑖𝐽 )′ denote the 𝐽 -dimensional response vector from individual 𝑖, 𝑖 = 1,… , 𝑛 and let 𝜽𝑗 = (𝜷𝑗 , 𝜙𝑗)′, 𝑗 =
1,… , 𝐽 . Although GLMs include a wide range of data types, e.g., continuous (normal and gamma), binary (Bernoulli), and
count (Poisson), we cannot write the joint likelihood as a product of marginal likelihoods because the components of 𝒚𝑖 are
correlated. In order to account for within-subject correlation, we utilize a Gaussian copula regression approach2. Specifically,
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let 𝐹𝑖𝑗(⋅) = 𝐹𝑗(⋅|𝒙𝑖𝑗 ,𝜽𝑗) denote the cumulative distribution function (CDF) for outcome 𝑗 of subject 𝑖, where 𝐹𝑗 denotes the CDF
based on the 𝑗𝑡ℎ outcome (e.g., the Bernoulli CDF if the 𝑗𝑡ℎ outcome is binary). Note that the CDF 𝐹𝑖𝑗 depends on the covariate
vector 𝒙𝑖𝑗 and the parameters of the 𝑗𝑡ℎ regression model 𝜽𝑗 . Using a Gaussian copula, the joint CDF for the 𝑖𝑡ℎ subject is given
by

𝐹 (𝒚𝑖|𝒙𝑖,𝜽;𝚪) = 𝐶{𝐹𝑖1(𝑦𝑖1),… , 𝐹𝑖𝐽 (𝑦𝑖𝐽 )|𝚪},
where

𝐶(𝑢1,… , 𝑢𝐽 |𝚪) = Φ𝐽{Φ−1(𝑢1),… ,Φ−1(𝑢𝐽 )|𝚪}, (2)
Φ𝐽 (⋅|𝚪) is the 𝐽 -dimensional multivariate Gaussian CDF with zero mean and correlation matrix 𝚪 and Φ−1(⋅) is the stan-
dard normal quantile function. When all 𝐽 outcomes are continuous, the density function of the Gaussian copula is2 𝑐(𝒖|𝚪) =
|𝚪|−𝐽∕2 exp

{

− 1
2
𝒗′(𝚪−1 − 𝑰)𝒗

}

, where 𝒗 = (Φ−1(𝑢1),… ,Φ−1(𝑢𝐽 ))′. The joint likelihood when all response variables are
continuous, obtained by partial differentiation, is given by

𝐿(𝜽,𝚪|𝐷) =
𝑛

∏

𝑖=1
𝑐(𝐹𝑖1(𝑦𝑖1),… , 𝐹𝑖𝐽 (𝑦𝑖𝐽 )|𝚪)

𝐽
∏

𝑗=1
𝑓𝑖𝑗(𝑦𝑖𝑗),

where 𝑓𝑖𝑗(⋅) = 𝑓𝑗(⋅|𝒙𝑖𝑗 ,𝜽𝑗) is the density function corresponding to 𝐹𝑖𝑗 . Frequentist inference is thus straightforward using
optimization methods.

When at least one of the 𝐽 outcomes is discrete, optimization is much more difficult. Suppose that the first 𝐽1 of the 𝐽
outcomes are continuous and the remaining 𝐽2 = 𝐽 − 𝐽1 are discrete. Obtaining the mixed density function requires 𝑛 × 2𝐽1
differences of the joint CDF (2), which is computationally prohibitive even for moderate values of 𝐽1. Furthermore, evaluation
of a multivariate normal CDF at a single data point 𝒚𝑖 typically relies on Monte Carlo estimation when 𝐽 > 2, and Monte Carlo
estimation may be highly inaccurate.

3.2 Bayesian inference for the GCGLM
Because of the difficulties in optimizing the likelihood of the GCGLM, a Bayesian latent variable approach has been developed
to copula estimation4,19, which we now review. Suppose initially that all 𝐽 margins are discrete. The augmented likelihood of
the GCGLM is given by

𝑓 (𝒚, 𝒖|𝒙,𝜽,𝚪) =
𝑛

∏

𝑖=1

[

𝑐(𝒖𝑖|𝚪)
𝐽
∏

𝑗=1
𝐼(𝑎𝑖𝑗 ≤ 𝑢𝑖𝑗 < 𝑏𝑖𝑗)

]

, (3)

where 𝑎𝑖𝑗 = 𝐹𝑖𝑗(𝑦𝑖𝑗 − 1), 𝑏𝑖𝑗 = 𝐹𝑖𝑗(𝑦𝑖𝑗), and 𝒖 = (𝑢𝑖1,… , 𝑢𝑖𝐽 ) ∈ (0, 1)𝐽 are latent variables. Consider the transformation
𝑣𝑗 = Φ−1(𝑢𝑗). It can be shown that the joint density under the transformation is

𝑓 (𝒚, 𝒗|𝒙,𝜽,𝚪) = 𝜙𝐽 (𝒗|𝚪)
𝐽
∏

𝑗=1
𝐼(Φ−1(𝑎𝑗) ≤ 𝑣𝑗 < Φ−1(𝑏𝑗)),

where 𝜙𝐽 (⋅|𝚪) is the 𝐽 -dimensional multivariate Gaussian density function with zero mean and correlation matrix 𝚪. Thus, the
joint density of 𝑓 (𝒚, 𝒗) is proportional to a truncated multivariate normal density, where the points of truncation depend on the
observed data19.

Suppose now that the some of the margins are continuous and others are discrete. We suppose without loss of generality
that the first 𝐽1 margins are continuous and the remaining 𝐽2 = 𝐽 − 𝐽1 margins are discrete. Let 𝒖𝐶𝑖 = (𝑢𝑖1,… , 𝑢𝑖,𝐽1)

′ and let
𝒖𝐷𝑖 = (𝑢𝑖,𝐽1+1,… , 𝑢𝑖𝐽 )′ so that 𝒖𝑖 = (𝒖′𝐶𝑖, 𝒖

′
𝐷𝑖)

′. Note that the components of 𝒖𝐶𝑖 are not actually latent because the CDF 𝐹𝑖𝑗
is a one-to-one function, and 𝑢𝑖𝑗 = 𝐹𝑖𝑗(𝑦𝑖𝑗) may be computed deterministically for 𝑗 = 1,… , 𝐽1. It has been shown3 that the
augmented likelihood in this case may be written as

𝑓 (𝒚, 𝒖𝐷|𝜽,𝚪) ∝
𝑛

∏

𝑖=1

{

𝑐(𝒖𝑖|𝚪)
[ 𝐽1
∏

𝑗=1
𝑓𝑖𝑗(𝑦𝑖𝑗)

][ 𝐽
∏

𝑗=𝐽1+1
𝐼(𝑎𝑖𝑗 ≤ 𝑢𝑖𝑗 ≤ 𝑏𝑖𝑗)

]}

, (4)

where 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are defined analogously to the fully discrete augmented likelihood (3).



Ethan M. Alt ET AL 5

3.3 A default, noninformative prior for the GCGLM
We now discuss a default prior for the GCGLM that is noninformative. Specifically, we will utilize the conjugate prior for
GLMs20 for the regression coefficients, half-Cauchy priors for the dispersion parameters, and, for the correlation matrix, the
“LKJ density”21.

Unlike the normal linear model, it can be difficult to specify a noninformative prior for other GLMs. For example, a normal
prior on the intercept of a logistic regression model induces a prior over the probability of response for the case where all covari-
ates are zero. To illustrate, suppose 𝛽0 ∼ 𝑁(0, 102). On the probability scale, the prior indicates that the response probability
when all the covariates are zero is approximately 0 or 1.

As a solution to this issue, we assume that the regression coefficients between outcomes are independent a priori and utilize
the conjugate prior for GLMs20, which we refer to as the CI prior. The CI prior for the regression model of outcome 𝑗 is given by

𝜋CI(𝜷𝑗|𝜏𝑗 , 𝜆𝑗 ,𝝁0𝑗) ∝
𝑛

∏

𝑖=1
exp

{

𝜆𝑗𝜏𝑗
[

𝜇0𝑖𝑗𝜃𝑖𝑗 − 𝑏𝑗(𝜃𝑖𝑗)
]}

, (5)

where 𝜏𝑗 = 𝜙−1
𝑗 , 𝝁0𝑗 = (𝜇01𝑗 ,… , 𝜇0𝑛𝑗)′ is a prior prediction (or guess) for the mean response 𝐸(𝒚𝑗), and 𝜆𝑗 ∈ [0, 1] is a precision

parameter that controls the level of influence the prior has on the posterior. If we wish for the prior to be noninformative, we
may specify small values for 𝜆𝑗 , e.g., 𝜆𝑗 = 0.10 for 𝑗 = 1,… , 𝐽 . For normal and Bernoulli models, we may elicit 𝝁0 = 0𝑱 𝑛 and
𝝁0 = 0.5𝑱 𝑛, respectively, where 𝑱 𝑛 is a 𝑛-dimensional vector of ones. For gamma and Poisson distributions, it is somewhat more
difficult to choose a value for 𝝁0. However, 𝝁0 may be elicited on the basis of similar studies or expert opinion. For example,
the average number of tumors per patient across cancers in a retrospective study was 3.322, so that we may elicit 𝝁0 = 3.3𝑱 𝑛.

In addition, we require a prior for the dispersion parameters. We may assume that the dispersion parameters are independent
a priori and specify a half-Cauchy prior on each dispersion parameter, which is given by

𝜋HC(𝜙𝑗|𝜙0𝑗 , 𝜉0𝑗) ∝

(

1 +
[𝜙𝑗 − 𝜙0𝑗

𝜉0𝑗

]2)−1

, 𝜙𝑗 > 0, 𝑗 ∈ , (6)

where 𝜙0𝑗 ∈ ℝ is a location parameter, 𝜉0𝑗 > 0 is a scale parameter, and  contains the indices of the 𝐽 outcomes that have
random dispersion parameters. The prior in (6) is a proper prior whose expectation and variance do not exist. Many advantages
of using the half-Cauchy prior for scale parameters in hyperpriors (i.e., priors for the hyperparameters) have been shown23.
Although our prior is non-hierarchical, the prior in (6) guarantees posterior propriety and will not have meaningful influence in
the posterior distribution of the dispersion parameters when 𝜉0𝑗 is large and the sample size is not too small, sharing some of
the desirable traits of using the half-Cauchy priors for hyperpriors. In the absence of prior information, we may take 𝜙0𝑗 = 0
and 𝜉0𝑗 = 20, which is approximately uniform over (0, 10).

Finally, we must specify a prior for the correlation matrix of the Gaussian copula. We utilize the LKJ density, which is given
by 𝜋LKJ(𝚪|𝜂) ∝ |𝚪|𝜂−1,𝚪 ∈ +

𝐽 , where +
𝐽 is the space of 𝐽 -dimensional positive definite correlation matrices and 𝜂 > 0 is a

hyperparameter. When 𝜂 = 1, the density corresponds to a uniform prior over the space of positive definite correlation matrices.
If 𝜂 ∈ (0, 1), the density has a trough at the identity matrix, favoring nonzero correlations. If 𝜂 ∈ (1,∞), the density has a peak
at the identity matrix, favoring independence. In the absence of prior knowledge about the correlations between the outcomes,
taking 𝜂 = 1 is reasonable.

For the default prior, we assume that the regression coefficients, dispersion parameters, and copula parameters are independent
a priori. This gives the joint prior

𝜋(𝜷,𝝓,𝚪|𝝀,𝝁0,𝝓) =

[ 𝐽
∏

𝑗=1
𝜋CI(𝜷𝑗|𝜆𝑗 ,𝝁0𝑗 , 𝜙𝑗)

][

∏

𝑘∈
𝜋HC(𝜙𝑘|𝜙0𝑘, 𝜉0𝑘)

]

𝜋LKJ(𝚪|𝜂). (7)

As described above, to allow the posterior to depend more on the data than the prior, it is advisable to take 𝜆𝑗 to be small (e.g.,
𝜆𝑗 = 0.10), 𝜉0𝑘 large (e.g., 𝜉0𝑘 = 20), and 𝜂 = 1. The prior in (7) is a noninformative proper prior, guaranteeing that the posterior
density is proper.

3.4 Prior elicitation with historical data
We now discuss prior elicitation for the GCGLM when we are in possession of historical data. Specifically, we will use an
approximation to the power prior (PP) known as the asymptotic power prior (APP)7,8.
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Suppose that we possess historical data 𝐷0 = {(𝑦0𝑖𝑗 ,𝒙0𝑖𝑗), 𝑖 = 1,… , 𝑛0, 𝑗 = 1,… , 𝐽}. The PP may be interpreted as a
discounted likelihood of the historical data, i.e.,
𝜋PP(𝜽,𝚪|𝑎0, 𝐷0) ∝

[

𝐿(𝜽,𝚪|𝐷0)
]𝑎0 𝜋0(𝜽,𝚪), where 𝑎0 ∈ [0, 1] controls for the level of influence that the historical data has

on the posterior and where 𝜋0(𝜽,𝚪) is referred to as an initial prior. While the PP is straightforward to implement in marginal
models, it is unclear how it can be implemented in the augmented likelihood (4) due to the Gaussian copula density function,
which is parameterized by a correlation matrix. Although 𝐽 independent power priors could be specified (one for each marginal
regression model), such a prior would ignore correlations between outcomes a priori, which is counterintuitive since the end
goal is to jointly model the outcomes.

The PP converges to a multivariate normal density function with mean equal to the mode and covariance matrix equal to the
inverse of the negative Hessian matrix based on the historical data 𝐷0

8. Thus, we may utilize the APP, which is given by

𝜋APP(𝜽,𝚪|𝑎0,𝜽0,𝚺0, 𝜂, 𝜋0) ∝
[

𝜙𝑞(𝜽|𝜽0,𝚺0)
]𝑎0 𝜋LKJ(𝚪|𝜂) (8)

where 𝜽0 and 𝚺0 are, respectively, approximations to the mean and covariance of the regression parameters of the GCGLM
based on the historical data and where 𝜙𝑞(⋅|𝒎,𝑪) is the 𝑞-dimensional multivariate normal density function with mean 𝒎 and
covariance matrix 𝑪 . The hyperparameters (𝜽0,𝚺0) may be obtained by drawing samples from the GCGLM of the historical
data and computing the mean (or mode) and covariance matrix of the samples pertaining to the regression parameters.

Note that the APP (8) only depends on the correlation matrix through the initial prior 𝜋0. Eliciting the power prior for only
some parameters in a model is closely related to the “partial borrowing power prior”8 since the prior is only informative for the
regression parameters. The prior in (8) is thus an approximation to an asymptotic power prior with partial borrowing.

3.5 Posterior inference in the GCGLM
We now discuss how posterior samples may be obtained for the GCGLM. We propose to use the efficient No U-Turn Sampler
(NUTS)24, which requires only the joint distribution of the parameters and latent variables up to a normalizing constant.

We may write the joint posterior distribution as

𝑝(𝜽,𝚪, 𝒖|𝒚) = 𝑓 (𝒚, 𝒖𝐷)𝜋(𝜽,𝚪), (9)

where 𝑓 (𝒚, 𝒖𝐷) is the augmented likelihood (4) and where 𝜋(𝜽,𝚪) is a prior over the regression parameters and correlation
matrix, which may be specified as the noninformative prior in (7) or, if historical data is available, the APP (8).

Posterior samples of (9) may be obtained via Markov chain Monte Carlo (MCMC). For example,19 provide an efficient Gibbs
sampling algorithm. However, since the latent variables are obtained utilizing the full conditional distributions, posterior samples
under that algorithm exhibit high autocorrelation. Instead, one may utilize the NUTS algorithm24, which is a Hamiltonian Monte
Carlo (HMC) algorithm. Because HMC only depends on the joint posterior distribution (as opposed to the full conditionals),
posterior samples are typically less autocorrelated than those of the Gibbs sampling algorithm.

4 JOINT DISTRIBUTION OF POSTERIOR PROBABILITIES AND TYPE 1 ERROR
CONTROL

In this section, we derive the asymptotic joint distribution of the posterior probabilities. In particular, we show that the asymptotic
distribution is a Gaussian copula. We exploit this fact to develop a method to account for multiple comparisons that provides strict
FWER control. Specifically, we develop a step-down procedure that controls FWER while allowing practitioners to determine
which hypotheses in the global null hypothesis may be rejected.

4.1 Asymptotic joint distribution of posterior probabilities
We now show that, under the global null hypothesis, the asymptotic joint distribution of the posterior probabilities is a Gaussian
copula distribution. We state this formally in the following theorem:

Theorem 1. Suppose that, for a given model, we have parameters 𝜽 = (𝜽′
1,𝜽

′
2)

′, where 𝜽1 is a 𝐾-dimensional vector giving the
parameters of interest and 𝜽2 is a vector of nuisance parameters. Let the global null hypothesis be expressed as 𝐻0 ∶ ∩𝐾

𝑘=1𝐻0𝑘,
where 𝐻0𝑘 = {𝜽 ∶ 𝜃1𝑘 = 𝛿𝑘} and 𝛿𝑘 is a target value. We may assume without loss of generality that 𝛿𝑘 = 0. Let 𝜋(𝑣)

𝐻0
(𝜽) ∝
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𝜋̃(𝑣)(𝜽)1{𝜽1 ∈ Θ1} be a validation prior25 (also referred to as a sampling prior26) on 𝜽, where 𝜋̃(𝑣)(𝜽) is a proper prior and where
Θ1 = {𝜽 ∶ 𝜃𝑘 = 0, 𝑘 = 1,… , 𝐾}. Assume that the data, 𝒚, are generated from the prior predictive distribution of the validation
prior, i.e., 𝑓 (𝒚) = ∫ 𝑓 (𝒚|𝜽)𝜋(𝑣)

𝐻0
(𝜽)𝑑𝜽. Let 𝜋(𝑓 )(𝜽) be a non-degenerate “fitting prior” (also referred to as an “analysis prior”)

that results in a proper posterior density given by 𝑝
(

𝜽|𝒚, 𝜋(𝑓 )) ∝ 𝐿(𝜽|𝒚)𝜋(𝑓 )(𝜽). Let 𝜽̂1 denote the MLE and let 𝚺̂1 denote the
corresponding inverse of the average Fisher information matrix evaluated at the MLE, i.e., 𝚺̂1 = [𝑛−1𝐼(𝜽̂1)]−1. If under 𝑓 (𝒚),
𝚺̂1

𝑝
→ 𝚺∗

1 and if
√

𝑛𝜽̂1
d
→ 𝑁𝐾 (𝟎,𝚺∗

1), then

(𝑃1,… , 𝑃𝐾 )
𝑑
→ GC(𝚪∗

1) as 𝑛 → ∞, (10)

where 𝑃𝑘 = 𝑃 (𝜃𝑘 > 0|𝒚), 𝚪∗
1 is the correlation matrix corresponding to 𝚺∗

1, and the notation
d
→ denotes convergence in

distribution.

In words, Theorem 1 says, under some relatively mild conditions, the asymptotic joint distribution of posterior probabilities
converges in distribution to a Gaussian copula distribution. A formal proof of Theorem 1 is presented in Section A.1 of the
appendix. In the sequel, we provide a heuristic argument for the proof.

By the Bernstein-von Mises theorem27, we have that the posterior distribution of 𝜽1 is, approximately, a normal distribution
with mean 𝜽̂1 and covariance matrix 𝚺̂1∕𝑛. It follows that, for 𝑘 = 1,… , 𝐾 , 𝑃𝑘 ≈ Φ(

√

𝑛𝜃̂𝑘∕𝜎̂1𝑘) where 𝜎̂2
1𝑘 is the 𝑘𝑡ℎ diagonal

element of 𝚺̂1 and where Φ(⋅) is the univariate standard normal CDF. Hence, by the assumptions regarding the consistency of
𝚺̂1 and the asymptotic normality of 𝜽̂1, we have

(𝑃1,… , 𝑃𝐾 ) ≈ (Φ(
√

𝑛𝜃̂1∕𝜎̂11),… ,Φ(
√

𝑛𝜃̂𝐾∕𝜎̂1𝐾 ))
d
→ GC(𝚪∗

1).

The conditions for Theorem 1 are relatively weak. For GLMs, it is well-known that, under 𝐻0,
√

𝑛𝜽̂ converges to a normal
distribution with mean 𝟎 and asymptotic covariance matrix given by 𝛀∗

1 = lim𝑛→∞[𝑛−1𝐼(𝟎)]−1. Thus, the asymptotic normality
of 𝜽̂1 is ensured for GLMs. Second, for GLMs, 𝜽̂1 converges in probability to 𝟎 as 𝑛 → ∞ under 𝐻0. Thus, 𝚺̂1, which is the
inverse of the average Fisher information matrix evaluated at 𝜽̂1, converges in probability to 𝛀∗

1 by the continuous mapping
theorem.

We note that under the special case that 𝐾 = 1, we have 𝜽̂ = 𝜃̂1 and Φ(
√

𝑛𝜃̂1∕𝜎̂11) is asymptotically uniformly distributed
under the null hypothesis. Hence, Theorem 1 may be viewed as a generalization of the well-known result regarding the asymptotic
distribution of a single posterior probability under the null hypothesis.

4.2 FWER control
In this section, we describe how we may utilize the asymptotic distribution of the posterior probabilities (10) to develop a
procedure that addresses multiple comparisons and provides strict FWER control. Unlike the previously discussed Frequentist
approaches, the proposed method takes into account dependence between parameters, asymptotically resulting in a FWER of
precisely 𝛼.

Suppose we wish to test 𝐻0 ∶ ∩𝐾
𝑘=1𝐻0𝑘 versus 𝐻1 ∶ ∪𝐾

𝑘=1𝐻1𝑘. The Holm method, reviewed in Section 2, may be conservative
if the parameters exhibit positive dependence. Conversely, exploiting the joint distribution of the posterior probabilities, we may
find, via simulation, the value 𝛾∗ such that 𝑃 (𝑃(𝐾) > 𝛾∗) ≈ 1 − 𝛾, where 𝑃(1),… , 𝑃(𝐾) are the order statistics of 𝑷 ∼ GC(𝚪).
In general, the value 𝛾∗ will depend on both the number of parameters, 𝐾 , and the estimated posterior correlation matrix, 𝚪̂.
By contrast, the Holm procedure ignores dependence and only depends only on 𝐾 . The global null hypothesis 𝐻0 may then be
rejected if the maximal posterior probability is larger than 𝛾∗, i.e., if max1≤𝑗≤𝐾{𝑃 (𝜃1𝑗 ≥ 0)} ≥ 𝛾∗ .

This approach may be generalized to find out which hypotheses may be rejected in the alternative hypotheses 𝐻1 = ∪𝐾
𝑘=1𝐻1𝑗 .

Let 𝒑̃ = (𝑝̃1,… , 𝑝̃𝐾 )′ denote the estimated posterior probabilities. Let 𝑷 = (𝑃1,… , 𝑃𝐾 ) ∼ GC(𝚪). For notational convenience,
we assume without loss of generality that the components of 𝑷 and 𝒑̃ are in descending order. We reject 𝐻01 if 𝑝̃1 > 𝛾∗1 , where
𝛾∗1 solves 𝑃 (𝑃1 > 𝛾∗1 ) = 1−𝛾 . If 𝐻01 is not rejected, the procedure terminates. Otherwise, we construct 𝚪2, the (𝐾−1)×(𝐾−1)
correlation matrix of (𝑃2,… , 𝑃𝐾 )′ ∼ GC(𝚪2) by removing the first row and first column of 𝚪. We then reject 𝐻02 if 𝑝̃2 > 𝛾∗2 ,
where 𝛾∗2 solves 𝑃 (𝑃2 > 𝛾∗) = 1− 𝛾 . Proceeding inductively, if 𝐻01 … ,𝐻0,𝑘−1 are rejected, we construct the (𝐾 −𝑘+1)× (𝐾 −
𝑘+ 1) correlation matrix 𝚪𝑘 by removing the first 𝑘− 1 rows and columns from 𝚪, rejecting the null hypothesis 𝐻0𝑗 if 𝑝̃𝑗 > 𝛾∗𝑘 ,
where 𝛾∗𝑘 solves 𝑃 (𝑃𝑘 > 𝛾∗𝑘 ) = 1 − 𝛾 . This step-down procedure is closely related to that of (author?) 1 where the evidence
threshold changes at each iteration. However, unlike the Holm-Bonferroni procedure, the proposed method is based on the joint
distribution of the posterior probabilities (which are correlated), rather than 𝑝-values from marginal models (which do not take
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into account correlation between response variables). When the submatrices of 𝚪 have positive elements, the threshold for the
posterior probabilities will be smaller than those assuming independence. Hence, the proposed method is more powerful than
using a Holm-like procedure applied directly to the posterior probabilities.

5 MULTIVARIATE PROBABILITY OF SUCCESS WITH OUTCOMES OF MIXED TYPES

In this section, we discuss how to utilize the GCGLM to robustly determine sample size for a planned study, i.e., to compute a
multivariate probability of success (POS), which is also referred to in the literature as assurance6 and Bayesian expected power.

5.1 The general methodology
We now review the concept of multivariate POS and show how the GCGLM may be utilized to determine a Bayesian sample size.
In particular, we discuss how POS may be computed when it is desirable for a planned study to meet multiple success criteria.

To fix ideas, suppose we wish to plan a study having 𝐽 endpoints based on possibly mixed types (e.g., continuous, binary, and
count). Let the future data be represented by 𝐷 = {(𝒚𝑖,𝒙𝑖), 𝑖 = 1,… , 𝑛}, where 𝒚𝑖 = (𝑦𝑖1,… , 𝑦𝑖𝐽 )′ is a 𝐽 -dimensional vector of
responses and 𝒙𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑝)′ is a 𝑝-dimensional vector consisting of all measured covariates for subject 𝑖 . We assume that
the joint distribution of 𝒚𝑖 may be modeled by a GCGLM.

Let 𝜽 = (𝜽1,… ,𝜽𝐽 ), where 𝜽𝑗 is a 𝑝𝑗-dimensional vector of regression parameters for outcome 𝑗, including a vector of
regression coefficients 𝜷𝑗 and possibly a dispersion parameter 𝜙𝑗 . Let Ω = ∩𝐾

𝑘=1Ω𝑘 denote the study success criteria, where
Ω𝑘 = ∪𝐿𝑘

𝑙=1Ω𝑘𝑙. For example, suppose it is desirable to determine the sample size for a study that rejects the null hypothesis
corresponding to the primary endpoint, denoted by 𝛽11, and global null hypothesis corresponding to the two secondary endpoints,
denoted respectively by 𝛽12 and 𝛽13. Then 𝐾 = 2, 𝐿1 = 1, 𝐿2 = 2, Ω1 = Ω11 = {𝜷 ∶ 𝛽11 > 0}, and Ω2 = Ω21 ∪ Ω22, where
Ω2𝑗 = {𝜷 ∶ 𝛽1𝑗 > 0}, 𝑗 = 2, 3.

Let 𝜋(𝑓 )(𝜽,𝚪) denote a fitting prior, which is the prior that will be used to analyze the future trial data. Let 𝑝(𝜽,𝚪|𝐷, 𝜋(𝑓 ))
denote the posterior density based on the likelihood in (4) with prior 𝜋(𝑓 ). We compute the indicator function for whether there
is sufficient evidence to claim that the treatment is efficacious based on the trial success criteria Ω, which is given by

1{success|𝐷} =
𝐾
∏

𝑘=1
1
{

max
1≤𝑙≤𝐿𝑘

𝑃 (Ω𝑘𝑙|𝐷) ≥ 𝛾𝑘

}

, (11)

where, for 𝑘 = 1,… , 𝐾 , 𝛾𝑘 is an evidence threshold that controls the type I error rate based on Ω𝑘 (e.g., in the example above,
𝛾1 = 0.95 and 𝛾2 is computed as described in Section 4).

Let 𝜋(𝑣)(𝜽,𝚪,𝜶) denote a validation prior over the parameters governing the response and covariate distributions. We generate
future data sets 𝐷 via the predictive distribution with respect to 𝜋(𝑣), i.e.,

𝑓
(

𝒚,𝒙|𝜋(𝑣)) = ∫ ∫ ∫ 𝑓 (𝒚|𝜽,𝚪)𝑓 (𝒙|𝜶)𝜋(𝑣)(𝜽,𝚪,𝜶)𝑑𝜽𝑑𝚪𝑑𝜶.

POS is defined as the marginal probability that the success criteria is satisfied with respect to the prior predictive distribution of
the validation prior, i.e.,

POS = ∫ ∫ 1{success|𝐷}𝑓
(

𝒚,𝒙|𝜋(𝑣)) 𝑑𝒚𝑑𝒙. (12)

5.2 Multivariate probability of success with historical data
In this section, we assume that we possess possibly two historical data sets 𝐷0𝑘 = {(𝒚0𝑘𝑖,𝒙0𝑘𝑖), 𝑖 = 1,… , 𝑛0𝑘}, 𝑘 = 1, 2.
The historical data sets will be utilized to elicit the validation prior and, in the presence of two historical data sets, the fitting
prior. We assume that the parameters for the response variables and the covariates are a priori independent, i.e., 𝜋(𝑣)(𝜽,𝚪,𝜶) =
𝜋(𝑣)
1 (𝜽,𝚪)𝜋(𝑣)

2 (𝜶).
We utilize the more recent historical data set, denoted by 𝐷01, to elicit the validation prior for the response variables. We

assume that the responses of the historical data set are generated from a GCGLM. The validation prior for the response model
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parameters is defined to be the posterior distribution with respect to the more recent historical data set 𝐷01, i.e.,

𝜋(𝑣)
1 (𝜽,𝚪) ∝

[ 𝑛01
∏

𝑖=1
𝐿(𝜽,𝚪|𝒚01𝑖, 𝒖01𝑖)

]

𝜋01(𝜽,𝚪),

where 𝐿(𝜽,𝚪|𝒚01𝑖, 𝒖01𝑖) is the augmented likelihood in (4) for subject 𝑖 based on the data 𝐷01 and 𝜋(𝑣)
01 (𝜽,𝚪) is an initial validation

prior, which may be specified as the noninformative default joint prior in (7).
Because the covariates are dependent, it may be difficult to specify a validation prior for the covariate distribution. It has

been proposed to utilize a factorization of the covariates25. For example, suppose we have 𝑝 covariates 𝑥1,… , 𝑥𝑝, where we
suppose without loss of generality that we wish to generate 𝑥1 first, then 𝑥2, and so forth. Previous works have utilized a
power prior for each conditional distribution25, i.e., 𝜋(𝑣)

2 (𝜶) =
{

∏𝑝
𝑗=1

∏2
𝑘=1

[
∏𝑛0𝑘

𝑖=1 𝑓 (𝑥0𝑘𝑖𝑗|𝒙̃0𝑘𝑖𝑗 ,𝜶𝑗)
]𝑏0𝑘

}

𝜋(𝑣)
20 (𝜶), where 𝑥̃0𝑘𝑖𝑗 =

(𝑥0𝑘𝑖1,… , 𝑥0𝑘𝑖(𝑗−1)) is a 𝑗 − 1-dimensional vector consisting of covariates preceding the 𝑗𝑡ℎ covariate in the order of generation,
𝜶𝑗 is the covariate vector for the 𝑗𝑡ℎ conditional distribution, and 𝑏0𝑘 ∈ [0, 1] is a power prior parameter, where values closer to
1 are specified when characteristics of participants in the planned trial are expected to be more similar to those in the historical
data, and where 𝜋(𝑣)

20 (𝜶) is an initial prior for 𝜶. Note that if we are only in possession of one historical data set, we may set
𝑏02 = 0. While the validation prior 𝜋(𝑣)

2 is a valid distribution over the covariate parameters, it is not order invariant except in
special cases. An alternative approach is to model the covariate distribution via a Gaussian copula. The primary advantages of
this approach are that it is order invariant. Moreover, the correlations between covariates are explicitly modeled.

If we possess historical data, we may utilize the APP (8) to elicit the fitting prior 𝜋(𝑓 )(𝜽,𝚪). Conversely, if no historical data are
available, we may elicit the joint prior in (7) for the APP. Note that prior information (such as expert opinion) may be incorporated
in the joint prior in (7) through the prior predictions 𝝁0, and informativeness may be adjusted through 𝜆𝑗 , 𝑗 = 1,… , 𝐽 .

5.3 Computational development
We now provide an algorithm to compute POS. We also describe how to compute POS if, ultimately, a frequentist analysis of
the trial data will be conducted. Finally, we provide a practical guide for how to compute POS in practice.

The algorithm to compute POS is summarized as follows.

1. Define 𝑛 (the future trial sample size), 𝛼 (the desired type I error rate), 𝐵 (the number of future data sets to generate), 𝑀
(the number of posterior samples), and Ω = ∩𝐾

𝑘=1Ω𝑘 (the study success criteria).

2. Obtain a sample of size 𝑛 from the prior predictive distribution of the validation prior (12), constructing future data
𝐷 = {(𝒚𝑖,𝒙𝑖), 𝑖 = 1,… , 𝑛}.

3. Using the fitting prior 𝜋(𝑓 )(𝜽) and the data 𝐷 from step (2), obtain a sample of size 𝑀 from the posterior distribution
𝑝(𝜽|𝐷, 𝜋(𝑓 )) . Record whether the future data 𝐷 satisfy the trial success criteria, i.e., compute

1{success|𝐷} =
𝐾
∏

𝑘=1
1
{

max
1≤𝑙≤𝐿𝑘

𝑃 (Ω𝑘𝑙|𝐷) ≥ 𝛾𝑘

}

,

where 𝛾𝑘 is determined by the method in Section 4.

4. Repeat steps (2)-(3) 𝐵 times. POS is the the average of the 𝐵 indicators from step (3).

We note that if a frequentist analysis of the data will ultimately be performed in the future trial, we may replace the indicator
function in step (3) with 1{success|𝐷} =

∏𝐾
𝑘=1 1{𝑝̂𝑘 < 𝛼𝑘}, where 𝛼𝑘 is the desired type I error rate for test 𝑘 and 𝑝̂𝑘 is

the (potentially adjusted) 𝑝-value associated with testing Ω𝑘. In the example described above, we have Ω1 = {𝜷 ∶ 𝛽11 > 0}
and Ω2 = ∪3

𝑗=2{𝜷 ∶ 𝛽1𝑗 > 0}. Let 𝑝̂1𝑗 denote the 𝑝-value for testing 𝐻0 ∶ 𝛽1𝑗 = 0. Using the Holm procedure, we have
1{success|𝐷} = 1{𝑝̂11 < 0.05}1{2min{𝑝̂12, 𝑝̂13} ≤ 0.05}. Even if a frequentist analysis will ultimately be performed, the
validation prior associated with the GCGLM is still useful, as it generates response variables of mixed types that are correlated.
Thus, the method to compute multivariate POS is quite general, and it may be utilized to robustly determine the sample size
even if there are constraints set on the analysis method (such as by regulators). The portion of the POS calculation which must
be fully Bayesian is the validation prior, which has no frequentist analogue.
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6 DATA ANALYSIS, TYPE I ERROR RATE, AND POWER

In this section, we conduct an analysis of a data set from a clinical trial in multiple sclerosis (MS) obtained through the Vivli
platform. We obtain posterior samples and posterior probabilities utilizing the proposed Bayesian approach and compare our
proposed method with frequentist analogues assuming marginal models. We also conduct simulation studies to compare power
and type I error rates of the proposed method to those based on a standard approach where multiplicity is corrected utilizing the
method of Holm applied to 𝑝-values obtained from marginal GLMs.

6.1 Data set analysis
The MOBILE study28 was a phase II, randomized, double-blind, placebo-controlled clinical trial comparing prolonged release
fampiridine against placebo in patients with progressive/relapse-remitting MS whose Expanded Disability Status Scale (EDSS)
score was between 4.0-7.0. A total of 132 patients were randomized, of which 64 received placebo and 68 received the exper-
imental treatment. We consider the same outcomes and endpoints in the phase III study, the ENHANCE study29, which are
slightly different than those for the MOBILE study. Unlike the phase III study, which utilized multiple imputation for missing
data, for sake of simplicity, we conducted a complete case analysis, which resulted in a sample size of 𝑛0 = 127.

The primary outcome (𝒚01) of the phase III study is whether a patient achieved a mean reduction of at least 8 points from
baseline on the multiple sclerosis walking scale (MSWS-12) over 24 weeks. The MSWS-12 score is based on a questionnaire
consisting of 12 items, where each question is associated with a response ranging from 1 to 5 and the score is given by the sum
of each of the 12 individual scores, which is then rescaled to be between 0 and 100. Higher values of the MSWS-12 score are
more indicative of severe disease. One of the key secondary outcomes, (𝒚02), is an indicator of whether the patient achieved a
mean improvement from baseline of at least 15% of the timed up and go (TUG) score, which measures the time it takes for a
patient from sitting to stand, walk a certain distance, and walk back to the chair. Another key secondary outcome, (𝒚03), is the
change from baseline in the Berg Balance Scale (BBS), measured as a continuous variable. The BBS is computed by taking the
sum of 14 sub-scores, each ranging from 0 (cannot perform) to 4 (normal performance). A positive change of the BBS score
indicates improvement.

All regression models included an intercept term and a treatment assignment indicator (0 = placebo, 1 = control). For 𝒚01, we
assume a logistic regression model adjusting for baseline MSWS-12 score, baseline TUG score, age, and baseline EDSS score.
We also assume a logistic regression model for 𝒚02, adjusting for baseline TUG score and screening EDSS score. For 𝒚03, we
assume a normal linear model adjusting for the baseline values of EDSS and BBS. The phase III trial additionally included prior
aminopyridine use in all models, but this covariate was not available in the phase II data. We write the vector of linear predictors
for the 𝑗𝑡ℎ regression model (with response variable 𝒚0𝑗) as 𝜼𝑗 = 𝑱𝛽0𝑗 + 𝒛0𝛽1𝑗 + 𝑿′

0𝑗𝛽2𝑗 , where 𝑱 is a 𝑛0-dimensional vector
of ones, 𝛽0𝑗 is an intercept term, 𝒛0 is a 𝑛0-dimensional vector of treatment indicators, 𝛽1𝑗 is the treatment effect for outcome 𝑗,
𝑿0𝑗 is the design matrix of the covariates for the 𝑗𝑡ℎ outcome, and 𝜷2𝑗 is vector of the regression coefficients associated with
the covariates. The primary effect of interest for the study is 𝛽11, and 𝛽12 and 𝛽13 are the secondary effects of interest.

We elicited the proposed default prior (7) with 𝜆𝑗 = 0.10 for 𝑗 = 1, 2, 3, 𝝁01 = 𝝁02 = 0.50𝑱 , 𝝁03 = 𝟎, and 𝜂 = 1.0. For the
variance parameter of 𝒚3, denoted as 𝜎2

3 , we elicited 𝜎2
3 ∼ HC(0.0, 20.0). Results of the data analysis are presented in Table 1.

The joint Bayesian analysis and the marginal frequentist analyses yielded similar results. The GCGLM suggests that treatment
could be more beneficial for the primary outcome (MSWS) and first secondary outcome (TUG) than the frequentist method, but
it suggested less efficacy for the second secondary outcome (BBS).

Bayesian Frequentist
Response Post. Mean Post. SD Post. Prob. MLE SE 𝑝-value
MSWS 0.86 0.40 0.9855 0.82 0.39 0.0182
TUG 0.71 0.40 0.9608 0.70 0.40 0.0405
BBS 1.53 0.82 0.9663 1.57 0.82 0.0285

TABLE 1 Comparison of the posterior distribution of the treatment effects for the GCGLM against frequentist analyses of
marginal models. MSWS = Multiple Sclerosis Walking Scale, TUG = Timed Up and Go, BBS = Berg Balance Scale, Post. =
posterior, SD = standard deviation, Prob. = probability, MLE = maximum likelihood estimate, SE = standard error.
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The posterior mean of the correlations between the outcomes was (𝛾̂12, 𝛾̂13, 𝛾̂23) = (0.29, 0.39, 0.33), indicating that the
response variables are moderately positively correlated. The mean posterior correlation of the treatment effects corresponding
to the secondary endpoints is 0.28, yielding an estimated threshold of 𝛾23 = 0.9736. Note that the threshold 𝛾23 is close to
what a Holm-type method would utilize (e.g., 0.975 for two-way hypotheses and 0.983 for three-way hypotheses). In order to
understand the benefit of the proposed joint Bayesian approach, we examine the power and type I error in simulation studies.

6.2 Power and type I error rate
We now compare the power and FWER of the proposed Bayesian approach with a frequentist approach applying the Holm
method to 𝑝-values of the marginal GLMs. We find that the FWER may be inflated in small samples, but otherwise the FWER
attains its theoretical level of 0.05. Moreover, the results show that the proposed Bayesian approach is at least as powerful as the
described Holm approach.

Let the phase II data be denoted by 𝐷0 = {(𝒚0𝑖,𝒙0𝑖), 𝑖 = 1,… , 𝑛0}, where 𝒚0𝑖 = (𝑦0𝑖1, 𝑦0𝑖2, 𝑦0𝑖3)′ and 𝒙0𝑖 = (𝑥0𝑖1,… , 𝑥0𝑖6)′.
The historical data will be utilized to elicit the validation prior for the covariate parameters 𝜶 and the regression parameters for
the response variables 𝜽 = (𝜷′

1, 𝜷
′
2, 𝜷

′
3, 𝜎

2
3)

′.
The covariates that we assume to be normally distributed include age, baseline multiple sclerosis impact scale (MSIS) score,

and baseline EDSS score, represented respectively by 𝑥01, 𝑥02, and 𝑥03. The three remaining covariates, the baseline values
of MSWS, TUG, and BBS (denoted respectively by 𝑥04, 𝑥05, and 𝑥06, are assumed to be log-normally distributed due to their
respective skewness. The covariate 𝑥02 is not utilized in the regression models, but it is included due to its correlation with the
other baseline measurements. The validation prior for the covariates is elicited as

𝜋(𝑣)
2 (𝜶,𝛀) ∝ 𝜋LKJ(𝛀|1.0)

𝐿
∏

𝑙=1

{ 𝑛0
∏

𝑖=1

[

𝑔𝑙(𝑥0𝑖𝑙|𝜇𝑙, 𝜎𝑙)𝑐(𝒖0𝑖|𝛀)
]

𝜋0𝑙(𝜇𝑙, 𝜎𝑙)

}

,

where 𝑔𝑙(⋅) is the density for covariate 𝑙, 𝜇𝑙 and 𝜎𝑙 are, respectively, the location and scale parameters for density 𝜋𝑙, which is a
normal distribution for 𝑙 = 1, 2, 3 and the log-normal distribution for 𝑙 = 4, 5, 6, 𝑐(⋅|𝛀) is the Gaussian copula density function
with 𝐿 × 𝐿 correlation matrix 𝛀, 𝒖𝑖 = (𝑢𝑖1,… , 𝑢𝑖6) is the vector of pseudo-latent variables, 𝑢𝑖𝑙 = 𝐺𝑙(𝑥0𝑖𝑙|𝜶𝑗), 𝑖 = 1,… , 𝑛0,
𝑙 = 1,… , 𝐿, where 𝐺𝑙 is the CDF associated with density 𝑔𝑙. Note that all 6 covariates here are continuous, so no latent variables
must be generated in the sampling scheme. The initial prior was elicited independently as 𝜋0𝑙(𝜇𝑙, 𝜎𝑙) ∝ 𝜋HC(𝜎𝑙|0.0, 20.0).

The validation prior for most of the regression parameters was taken to be the posterior density of the historical data utilizing
the proposed Bayesian approach. A Bayesian version of power, known as Bayesian conditional expected power (BCEP)30, was
computed utilizing a validation prior that restricted the treatment effects to be positive. The validation prior for the type I error
was the posterior distribution of the phase II data excluding the treatment assignment indicator as covariates (i.e., the marginal
validation prior for the treatment effects is a point mass at 𝜷1 = 𝟎). We generated future data sets with fixed levels of correlation,
setting 𝜌 ∈ {−0.40,−0.20, 0.0, 0.20, 0.40, 0.80}. The purpose of fixing the correlations is to accurately identify the the effect
of correlations between outcomes (e.g., if uncertainty in correlations is permitted, the generated data sets might range from
relatively low correlation to relatively high correlation).

In large samples with discrete response variables, obtaining a large amount of posterior samples can take a long time because
there are 𝑛𝐽𝑑 latent variables, where 𝐽𝑑 is the number of discrete response variables. We thus utilize an asymptotic approximation
to compute the posterior probabilities. Specifically, we obtain 2, 000 samples after a 1,000 burn-in period, utilizing a normal
CDF approximation via 𝑃 (𝛽1𝑗 > 0|𝐷) ≈ 1 − Φ(0|𝛽1𝑗 , 𝜏𝑗) for 𝑗 = 1, 2, 3, where 𝛽1𝑗 and 𝜏𝑗 are, respectively, the posterior
mean and variance based on the 2,000 samples and where Φ(⋅|𝑎, 𝑏) is the normal CDF function with mean 𝑎 and variance 𝑏.
When the posterior samples are approximately symmetric and unimodal (as is often the case for GLM regression coefficients
except in small samples), a normal CDF approximation should work well for the reasons described in Section 4. In Figure 4 of
the Supporting Information, as justification for this approximation, we simulate data sets, plotting the approximated posterior
probabilities using the normal CDF and the posterior probabilities obtained using full MCMC. The 𝑅2 is approximately equal
to 1, and the points lie on a 45-degree line, indicating that they are approximately equal.

We conduct hypothesis tests for global null hypotheses 𝐻 (𝐼)
0 = ∩𝑖∈𝐼𝐻0𝑖 against global alternative hypotheses 𝐻 (𝐼)

1 = ∪𝑖∈𝐼𝐻1𝑖
for 𝐼 ∈ {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}}, where 𝐻0𝑖 = {𝜷 ∶ 𝛽1𝑖 = 0} and 𝐻1𝑖 = {𝜷 ∶ 𝛽1𝑖 > 0}. For example, 𝐻{1,2,3}

0 is the
null hypothesis that 𝛽11, 𝛽12 and 𝛽13 are all zero, while 𝐻1𝐼 is the alternative hypothesis that at least one of them is positive.
For brevity, we focus on the null hypothesis 𝐻{1,2,3}

0 . Simulation results for the other cases are presented in Section 2 of the
Supporting Information.
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Figure 1 depicts the type I error rate and power corresponding to the null hypothesis 𝐻{1,2,3}
0 . The type I error rate is inflated

for lower sample sizes. When outcomes are highly positive correlated, power is noticeably higher under the proposed Bayesian
approach compared to using the method of Holm, even when the type I error rate is controlled.

When the sample sizes are large enough so that asymptotic approximations are accurate, the proposed Bayesian approach
should perform no worse than utilizing a frequentist marginal model approach, and power gains should be more noticeable for
more highly correlated parameters. Conversely, when the parameters are negatively correlated or independent and type I error is
controlled, there should be no difference between the Bayesian and frequentist approaches because the threshold for negatively
correlated parameters based on the Gaussian copula is the same as under independence.

In order to more convincingly demonstrate that power gains using the proposed joint Bayesian approach are not due to inflated
FWER as a result of asymptotic approximations, we conduct a large-scale simulation with a multivariate normal model in
Section 1 of the Supporting Information. Figure 1 of the Supporting Information indicates that FWER is 0.05 for the proposed
Bayesian approach across all correlation structures. When the outcomes are positively correlated, the Holm approach is notice-
ably more conservative and less powerful than the proposed Bayesian approach. However, noticeable power gains are only
achieved under the highest correlation scenario (i.e., 𝜌 = 0.8). Further simulations indicate that the expected number of rejected
null hypotheses is higher under the proposed Bayesian method when the response variables are positively correlated (see Figure
3 of the Supplementary Materials).

7 PROBABILITY OF SUCCESS APPLICATION

We now illustrate how the phase II MOBILE study may be utilized to estimate the sample size for the phase III study. We
note that the phase III study was successful and utilized a sample size of 𝑛 = 646. The planned sample size of the study was
𝑛∗ = 59029, corresponding to roughly 90% power for a two-sided test at 𝛼 = 0.05 to detect a minimum of 14.5% absolute
improvement in the on-treatment response rate. The purpose of this section is to show how the proposed approach could have
been utilized to determine the sample size for the phase III study.

The validation prior for the covariates is identical to that utilized in Section 6.2. The validation prior for the outcome model
is the posterior distribution of the phase II data using the GCGLM, described in Section 6.1. Using the methods described
in Section 5, we generated 𝐵 = 10, 000 data sets from the prior predictive distribution of the validation prior with sample
sizes 𝑛 ∈ {450, 475, 500,… , 650}. For this simulation study, it is of interest to reject both the null hypothesis corresponding
to the primary endpoint

(

i.e., 𝐻{1}
0

)

and the global null hypothesis corresponding to the secondary endpoints
(

i.e., 𝐻{2,3}
0

)

.
A particular data set, 𝐷, satisfies the study success criteria if 1{success|𝐷} = 1{𝑃 (𝛽11 > 0|𝐷) ≥ 0.95} × 1{max{𝑃 (𝛽12 >
0|𝐷), 𝑃 (𝛽13 > 0|𝐷)} ≥ 𝛾∗} is equal to 1, where 𝛾∗ is determined to control the type I error based on the posterior correlation
of the regression coefficients as described in Section 4.

Results for the simulation are depicted in Figure 2. The first panel of Figure 2 indicates that a sample size of approximately
𝑛 = 570 would be required in order to attain a 90% probability of having a successful trial based on the primary endpoint. We
note the POS we have developed assumes no loss to follow-up, so it may be an underestimate of the trial’s POS if dropout occurs.
Although we do not consider it here, it is straightforward to incorporate dropout in the predictive data generation process to
account for this possibility in POS calculations. The POS calculation for the primary endpoint for the joint model is essentially
the same as that from using a marginal GLM.

However, the second column of Figure 2 indicates that the proposed Bayesian approach provides a higher probability that
at least one of the null hypotheses corresponding to the secondary endpoints is rejected. This should be expected since, as
mentioned in 6.1, the outcomes are positively correlated, and, hence, the regression coefficients corresponding to the treatment
are also positively correlated.

The overall POS for rejecting the null hypotheses corresponding to the primary endpoint and at least one of the secondary
endpoints is slightly higher for the proposed Bayesian approach in smaller samples and not discernible in larger samples. It is
worth mentioning that, in this example, we are only considering a POS calculation concerning the global null hypothesis that
two secondary endpoints are zero. In other applications (such as in statistical genetics), there may be many more parameters
of interest. The POS utilizing the proposed Bayesian step-down procedure could be substantially higher than using a Holm-
like procedure that ignores dependence since the threshold for the Bayesian approach is no higher (and oftentimes lower) than
assuming independence.
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8 DISCUSSION

While the examples provided in this paper focus on the joint analysis of GLMs, we note that the method can be extended to joint
analyses of other types of outcomes (e.g., time-to-event data and regression models outside the exponential family), with the
only restriction being that the CDF of the model is computable. Although the proposed approach requires an assumption that
the data generating process is a Gaussian copula, it does not require post hoc adjustments to test statistics in order to control the
FWER. Rather, the proposed Bayesian approach exploits the posterior correlations of the parameters of interest to determine
rejection criteria. In other words, the correlations between parameters are modeled directly. In small samples, type I error rates
may be inflated for hypothesis tests concerning the individual parameters, so that the proposed method for multiple testing yields
an even more inflated type I error rate. A simple and elegant approach to handling this issue is to elicit 𝜂 > 1 in the LKJ prior
for the correlation matrix, which will favor independence.

This paper presents several avenues for further research. First, it is worth exploring whether the proposed step-down approach
is the most powerful mechanism that controls FWER based on the joint Bayesian model. While it was demonstrated that a Holm
procedure utilizing frequentist 𝑝-values was more conservative, power gains were only noticeable for highly positively correlated
parameters.

Second, the asymptotic joint distribution of the posterior probabilities is useful in other contexts. For example, in genome-
wide association studies (GWAS), response variables consist of hundreds or thousands of single nucleotide polymorphisms
(SNPs), presenting a particularly challenging multiplicity problem. Because FWER is quite stringent, most methods focus on
controlling for the false discovery rate (FDR), which is defined to be the expected proportion of rejected null hypotheses that
are false. The asymptotic joint distribution of the posterior probabilities may be exploited to construct a step-up procedure31 to
control for the FDR.

Finally, in settings where historical data is available, it is often useful to construct a prior based on the historical data that
discounts the impact the historical data has on the posterior, such as done in the power prior7. However, it is not clear how to
discount the Gaussian copula density in an intuitive way since correlation parameters are not free parameters in general.
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APPENDIX

A MULTIPLICITY CONTROL

In this section, we provide a formal proof of Theorem 1 in Section 4.1 of the main text. We also provide a detailed algorithm
for the step-down testing approach described in Section (4.2).

A.1 A proof of Theorem 1 in Section 4.1
Proof. By the Bernstein von-Mises theorem27,

sup
𝐵
|𝑃 ∗(𝜽 ∈ 𝐵|𝒚) −𝑄𝑛(𝐵)| → 0

as 𝑛 → ∞, where 𝑄𝑛 is the measure with respect to the multivariate normal density 𝜙(⋅|𝜽̂1, 𝑛−1𝚺̂1). It thus follows that for
𝑘 = 1,… , 𝐾 ,

|

|

|

|

𝑃 (𝜃1𝑘 > 0|𝐷) − Φ
(

√

𝑛𝜃̂1𝑘∕𝜎̂1𝑘
)

|

|

|

|

p
→ 0.

Hence, we must have
|

|

|

|

|

|

|

⎛

⎜

⎜

⎝

𝑃 (𝜃1 > 0|𝒚)
⋮

𝑃 (𝜃𝐾 > 0|𝒚)

⎞

⎟

⎟

⎠

−
⎛

⎜

⎜

⎝

Φ(
√

𝑛𝜃̂11∕𝜎̂11)
⋮

Φ(
√

𝑛𝜃̂1𝐾∕𝜎̂1𝐾 )

⎞

⎟

⎟

⎠

|

|

|

|

|

|

|

p
→ 0 (A1)

In words, the relationship (A1) indicates that, for large samples, the posterior probabilities may be approximated accurately
with a normal distribution.

Under the usual regularity conditions for MLEs, we have

𝚺̂−1∕2
1

√

𝑛𝜽̂1
𝑑
→ 𝑁𝐾 (𝟎, 𝑰).

Let 𝑫̂1 = diag{𝜎2
11,… , 𝜎2

1𝐾} denote the diagonal elements of 𝚺̂1, so that we may decompose 𝚺̂1 = 𝑫̂1∕2
1 𝚪̂1𝑫̂

1∕2. Then by the
consistency of 𝚺̂1, we have

𝑫̂−1∕2
1

√

𝑛𝜽̂1
d
→ 𝑁(𝟎,𝚪∗

1). (A2)

The result follows by combining (A1) and (A2) with the continuous mapping theorem.

A.2 FWER control
In this section, we describe how we may utilize the asymptotic distribution of the posterior probabilities (10) to develop a
procedure that addresses multiple comparisons and provides strict FWER control. Unlike the previously discussed Frequentist
approaches, the proposed method takes into account dependence between parameters, asymptotically resulting in a FWER of
precisely 𝛼.

Suppose we wish to test 𝐻0 ∶ ∩𝐾
𝑘=1𝐻0𝑘 versus 𝐻1 ∶ ∪𝐾

𝑘=1𝐻1𝑘. The Holm method, reviewed in Section 2, may be conservative
if the parameters exhibit positive dependence. Conversely, exploiting the joint distribution of the posterior probabilities, we may
find, via simulation, the value 𝛾∗ such that 𝑃 (𝑃(𝐾) > 𝛾∗) ≈ 1 − 𝛾, where 𝑃(1),… , 𝑃(𝐾) are the order statistics of 𝑷 ∼ GC(𝚪).
In general, the value 𝛾∗ will depend on both the number of parameters, 𝐾 , and the estimated posterior correlation matrix, 𝚪̂.
By contrast, the Holm procedure ignores dependence and only depends only on 𝐾 . The global null hypothesis 𝐻0 may then be
rejected if the maximal posterior probability is larger than 𝛾∗, i.e., if max1≤𝑗≤𝐾{𝑃 (𝜃1𝑗 ≥ 0)} ≥ 𝛾∗ .

This approach may be generalized to find out which hypotheses may be rejected in the alternative hypotheses 𝐻1 = ∪𝐾
𝑘=1𝐻1𝑗 .

Let 𝒑̃ = (𝑝̃1,… , 𝑝̃𝐾 )′ denote the estimated posterior probabilities. Let 𝑷 = (𝑃1,… , 𝑃𝐾 ) ∼ GC(𝚪). For notational convenience,
we assume without loss of generality that the components of 𝑷 and 𝒑̃ are in descending order. We reject 𝐻01 if 𝑝̃1 > 𝛾∗1 , where
𝛾∗1 solves 𝑃 (𝑃1 > 𝛾∗1 ) = 1−𝛾 . If 𝐻01 is not rejected, the procedure terminates. Otherwise, we construct 𝚪2, the (𝐾−1)×(𝐾−1)
correlation matrix of (𝑃2,… , 𝑃𝐾 )′ ∼ GC(𝚪2) by removing the first row and first column of 𝚪. We then reject 𝐻02 if 𝑝̃2 > 𝛾∗2 ,
where 𝛾∗2 solves 𝑃 (𝑃2 > 𝛾∗) = 1 − 𝛾 . Proceeding inductively, if 𝐻01 … ,𝐻0,𝑘−1 are rejected, we construct the (𝐾 − 𝑘 + 1) ×
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(𝐾 − 𝑘 + 1) correlation matrix 𝚪𝑘 by removing the first 𝑘 − 1 rows and columns from 𝚪, rejecting the null hypothesis 𝐻0𝑗 if
𝑝̃𝑗 > 𝛾∗𝑘 , where 𝛾∗𝑘 solves 𝑃 (𝑃𝑘 > 𝛾∗𝑘 ) = 1 − 𝛾 . This step-down procedure is closely related to the Bonferroni-Holm procedure1,
where the evidence threshold changes at each iteration. However, unlike the Holm-Bonferroni procedure, the proposed method
is based on the joint distribution of the posterior probabilities (which are correlated), rather than 𝑝-values from marginal models
(which do not take into account correlation between response variables). When the submatrices of 𝚪 have positive elements,
the threshold for the posterior probabilities will be smaller than those assuming independence. Hence, the proposed method is
more powerful than using a Holm-like procedure applied directly to the posterior probabilities.
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FIGURE 1 Estimated type I error rate and BCEP for 𝐻{1,2,3}
0 versus 𝐻{1,2,3}

1 . The dotted black line is a horizontal line at 0.05
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