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SUMMARY

There has been increased interest in using prior information in statistical analyses. For example, in rare
diseases, it can be difficult to establish treatment efficacy based solely on data from a prospective study due
to low sample sizes. To overcome this issue, an informative prior to the treatment effect may be elicited.
We develop a novel extension of the conjugate prior of Chen and Ibrahim (2003) that enables practitioners
to elicit a prior prediction for the mean response for generalized linear models, treating the prediction as
random. We refer to the hierarchical prior as the hierarchical prediction prior (HPP). For independent and
identically distributed settings and the normal linear model, we derive cases for which the hyperprior is
a conjugate prior. We also develop an extension of the HPP in situations where summary statistics from
a previous study are available. The HPP allows for discounting based on the quality of individual level
predictions, and simulation results suggest that, compared to the conjugate prior and the power prior, the
HPP efficiency gains (e.g., lower mean squared error) where predictions are incompatible with the data.
An efficient Monte Carlo Markov chain algorithm is developed. Applications illustrate that inferences
under the HPP are more robust to prior-data conflict compared to selected nonhierarchical priors.

Keywords: Bayesian inference; Generalized linear models; Hierarchical prior; Hyperprior.

1. INTRODUCTION

Exponential family models, which include distributions for the binary, count, and continuous data, are
among the most utilized models for statistical analysis. In many application areas, it is desirable to incor-
porate prior information in an analysis. In the Bayesian paradigm, such information may be incorporated
through an informative prior distribution on the parameters of interest and, possibly, nuisance parameters.
For example, in rare disease clinical trials, it can be difficult to establish treatment efficacy based solely
on data from a prospective study, so an informative prior may be elicited.
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2 E. M. ALT AND OTHERS

When previous studies have been conducted, it is often desirable to construct a prior based on these
data. Three popular priors that have been proposed for this setting are the power prior (PP) (Ibrahim and
Chen, 2000), commensurate priors (CPs) (Hobbs and others, 2012), and meta-analytic-predictive (MAP)
priors (e.g., Schmidli and others, 2014). The primary limitation of the former two priors is that they require
access to an entire historical set in order to elicit a joint prior for correlated regression coefficients. MAP
priors are limited in that they have only been developed under the context where there is a single parameter
of interest, and it is unclear how to specify the mixture weights in such priors (Egidi and others, 2021).
In many data applications, it is desirable to elicit a prior for regression coefficients whose components
are correlated. For example, in clinical trials and observational studies, it is often of interest to determine
whether an intervention is more/less efficacious for certain groups (i.e., effect heterogeneity). Another
example arises when prediction is of paramount interest, such as is often the case in precision medicine.

In this article, we develop a novel extension of the conjugate prior of Chen and Ibrahim (2003), where
the prediction of the mean response is treated as random. Treatment of the prior prediction as random
is intuitive because the prior prediction will typically be made on the basis of summary statistics or
expert opinion, both of which have some degree of uncertainty. We refer to the hierarchical prior as the
“hierarchical prediction prior” (HPP). In regression models, the HPP induces a correlation structure on
the regression coefficients a priori. The conjugate priors of Diaconis and Ylvisaker (1979) (the DY prior)
and Chen and Ibrahim (2003) (the CI prior) may be cast as special cases of the HPP for independent and
identically distributed (i.i.d.) and regression models, respectively. Moreover, the HPP is quite flexible,
enabling practitioners to elicit predictions on the mean response based on one or more covariates.

The posterior density under the HPP is robust to incompatible prior predictions for the mean response.
In particular, we show in i.i.d. settings and for the normal linear model that the posterior means of the
predictions fall between the predicted values based on the maximum likelihood estimator (MLE) and the
elicited prior prediction. Moreover, under some limiting cases, we show in i.i.d. data settings and the
normal linear model that the HPP is a conjugate prior with the posterior maintaining the same marginal
and conditional structures as the prior.

We illustrate how to utilize the HPP for settings in which a previous study was conducted, but only the
point estimates and standard errors for the regression coefficients are available, comparing the posterior
distribution of the parameter of interest under the HPP against that from an analysis using the CI prior, an
approximation to the asymptotic PP (Ibrahim and others, 2015a), and the PP (Ibrahim and Chen, 2000), the
latter for which the individual participant data set (IPD) was utilized by necessity. When the historical data
set is incompatible with the current data set (e.g., when the historical data provide evidence that treatment
is beneficial, and the current data suggest treatment is not beneficial), the posterior of the treatment effect
under the HPP consistently placed more mass in the region associated with nonbeneficial effects, while
the posterior distributions for the treatment effect under the other priors suggested a high probability that
treatment is efficacious.

One of the most attractive features of the HPP is its versatility. The HPP may be utilized (1) to elicit a
prior based on expert opinion; (2) to elicit a prior on the basis of summary statistics such that the regression
coefficients are correlated a priori; and (3) as an alternative to existing approaches for prior elicitation in
the presence of a historical data set. While we motivate the usage of the HPP in clinical trials, the prior
is useful in other contexts, such as in comparative effectiveness research in observational data settings,
where it is difficult to detect an effect based off of data alone due to a small number of events.

In i.i.d. settings, samples from the posterior density under the HPP ar straightforward utilizing any
Markov chain Monte Carlo (MCMC) algorithm. For regression settings excluding the normal linear
model, sampling is more involved because there is no general closed-form of the normalizing constant
for the CI prior. We utilize a fast and accurate Laplace approximation to the normalizing constant, which
enables efficient sampling using MCMC methods.
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Hierarchical prediction prior for generalized linear models 3

The remainder of the article is organized as follows. In Section 2, we review the conjugate prior of
Diaconis andYlvisaker (1979) and develop the HPP in i.i.d. data settings. In Section 3, we develop the HPP
for generalized linear models (GLMs). In Section 4, we illustrate how the HPP may be utilized for settings
in which summary statistics are available (e.g., in a publication). In Section 5, we conduct a data analysis,
and in Section 6, a simulation study to compare the performance of the HPP with selected nonhierarchical
priors, showing that the HPP performs favorably compared to the nonhierarchical priors when the prior
prediction is incompatible with the observed data. In Section 7, we close with some discussion.

2. THE INDEPENDENT AND IDENTICALLY DISTRIBUTED CASE

We begin by considering the i.i.d. data setting for exponential family models. We develop the HPP for the
i.i.d. case and establish theoretical connections to the conjugate prior of Diaconis and Ylvisaker (1979).

2.1. Hyperprior motivation and construction

Here, we discuss the motivation for the HPP and some of its properties. Suppose we observe {yi, i =
1, . . . , n} with likelihood function in the exponential family, given by

f (y|θ , φ) =
n∏

i=1

exp
[

1

ai(φ)
{yiθ − b(θ)} + c(yi; φ)

]
, (2.1)

where ai is a positive function and typically ai(φ) = wiφ, y = (y1, . . . , yn)
′, θ ∈ � is referred to as the

canonical parameter, where � is the domain of θ , and the functions b and c index the density or mass
function. We assume ai(φ) = φ is known and fixed, and we may suppose without loss of generality that
φ = 1. Diaconis and Ylvisaker (1979) showed that each distribution in the exponential family admits a
conjugate prior of the form

πDY(θ |λ, m) = 1

Z(λ, λm)
exp [λ {θm − b(θ)}] , θ ∈ �, (2.2)

where Z(λ, λm) = ∫
�

exp [λ {θm − b(θ)}] dθ is a normalizing constant, λ is a precision parameter typi-
cally chosen so that λ ∈ (0, n], and m ∈ ḃ(�) is a location parameter, where ḃ is the first derivative of the
function b and ḃ(�) is the image of the set � under the function ḃ. Henceforth, we refer to the prior (2.2)
simply as the “DY prior.” Diaconis and Ylvisaker (1979) showed that, under the DY prior, E(y) = m, that
is, m may be interpreted as a prior prediction (or “guess”) for the mean of y. The hyperparameter λ con-
trols for the level of informativeness in the prior. Let y = (y1, . . . , yn)

′. The posterior density utilizing the
likelihood (2.1) and prior (2.2) is given by p(θ |y, λ, m) = πDY

(
θ

∣∣n + λ, nȳ+λm
n+λ

)
, where ȳ = n−1

∑n
i=1 yi

is the sample mean. The primary disadvantage of the DY prior is that the posterior is sensitive to the prior
prediction m when λ is large. For example, let μ = ḃ(θ) denote the mean parameter of the distribution
of the response variables. It can be shown that the posterior mean of μ under the DY prior is given by
E(μ|y, λ, m) = (nȳ+λm)/(n+λ), i.e., the posterior mean of μ under the DY prior is a convex combination
of the observed sample mean ȳ and the prior prediction m, with higher values of λ putting more weight
on the value of m in the posterior mean of μ. Thus, if m is an inaccurate prediction for E(y), the posterior
under the DY prior could give misleading results.

Moreover, the hyperparameter λ in the DY prior cannot simultaneously control the uncertainty sur-
rounding m and the level of borrowing from the prior. For example, in a Bernoulli model, suppose an
expert believes with 95% probability that the success probability is between 0.2 and 0.4. This may be
accomplished by eliciting m = 0.3 and λ = 78.8 in the DY prior (2.2). This imposes a restriction on the
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4 E. M. ALT AND OTHERS

sample size, namely, n ≥ 79. Conversely, for fixed values of n, λ, and m, we cannot adjust the DY prior
to account for uncertainty surrounding the value of m.

Since m is typically elicited on the basis of summary statistics or expert opinion, both of which are
measured with uncertainty, it is natural to view m as having a probability distribution. Thus, we propose
to treat the hyperparameter m in the DY prior as random. We refer to the joint prior of (θ , m) as the HPP,
and the prior on m simply as the hyperprior.

We now develop the hyperprior. Let ν = ḃ−1(m) ∈ �. We elicit

π(ν|λ0, μ0) ∝ exp [λ0{νμ0 − b(ν)}] , ν ∈ �, (2.3)

which we may write in terms of the shape parameter m = ḃ(ν) as

πHPP(m|λ0, μ0) ∝ exp
[
λ0{ḃ−1(m)μ0 − b(ḃ−1(m))}] 1

v(m)
, m ∈ ḃ(�), (2.4)

where v(m) = b̈ ◦ ḃ−1(m) is the variance function associated with the exponential family model (2.1). For
each exponential family model, the hyperprior is a recognizable density (e.g., a beta density for binomial
models, a gamma density for Poisson models, an inverse-gamma density for gamma models, and a normal
density for normal models). The hyperparameter λ0 is a precision parameter controlling for the level of
certainty surrounding the prior prediction.

The HPP is obtained by combining the DY prior (2.2) and the hyperprior (2.4), giving

πHPP(θ , m|λ, λ0μ0) = πDY(θ |λ, m) πHPP(m|λ0, μ0), θ ∈ �, m ∈ ḃ(�). (2.5)

It can be shown that the prior mean of m in the hyperprior is E(m) = μ0. Thus, E(y) = Eθ {E(y|θ)} =
Eθ {ḃ(θ)} = Em{Eθ |m(ḃ(θ))} = E(m) = μ0, so that, similar to the DY prior, μ0 may be interpreted as a
prior prediction for E(y). However, unlike the DY prior, the HPP allows practitioners to directly elicit
uncertainty surrounding the prior prediction μ0 for any fixed λ. In the Bernoulli example above, we may
elicit μ0 = 0.30 and λ0 = 78.8, so that, a priori, P(0.2 ≤ m ≤ 0.4) = 0.95 for any value of λ.

Combining (2.1), (2.2), and (2.4) yields the joint posterior density

p(θ , m|y, λ, λ0, μ0) ∝ πDY

(
θ

∣∣∣∣n + λ,
nȳ + λm

n + λ

)
p(m|y, λ, λ0, μ0) . (2.6)

Note that as λ0 → ∞, p(m|y, λ, λ0, μ0) is simply a point mass at m = μ0, and the posterior distribution of θ

thus converges to the posterior under the DY prior. Thus, we may view the HPP as a flexible generalization
of the DY prior.

We may write the marginal posterior distribution of θ as

p(θ |y, λ, λ0, μ0) ∝
∫

πDY

(
θ

∣∣∣∣n + λ,
nȳ + λm

n + λ

)
p(m|y, λ, λ0, μ0)dm. (2.7)

The relationship (2.7) indicates that the marginal posterior density of θ under the HPP may be interpreted
as the posterior utilizing the DY prior with a fixed value of m averaged over the posterior distribution of
m. In Section 2.2, we show that the posterior mean of m is between ȳ and μ0 as λ0 → ∞. Simulation
results suggest that the result holds in general. In effect, the marginal posterior distribution of θ depends
on the data y in two ways: through the shape parameter in the posterior of the DY prior conditional on m,
and in the marginal posterior distribution for m. Conversely, the posterior density of the DY prior treats
m = μ0 as fixed.
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Hierarchical prediction prior for generalized linear models 5

2.2. Limiting posterior distributions

In this section, we discuss an interesting limiting case of the HPP. Namely, we establish results for the
prior when λ → ∞. We may write the posterior distribution of m as

p(m|y, λ, λ0, μ0) ∝ Z(λ + n, λm + nȳ)

Z(λ, λm)
πHPP(m|λ0, μ0), (2.8)

where Z(a, c) = ∫
�

exp[a{θ(c/a) − b(θ)}]dθ is the normalizing constant of the DY prior with precision
parameter c and shape parameter a and πHPP(m|λ0, μ0) is defined in (2.4). As λ → ∞, the hyperprior
becomes a conjugate density, whose posterior mean is a convex combination of the sample mean and the
prior prediction. We state this formally in the following theorem.

THEOREM 2.1 Let y1, . . . , yn be observations from a binomial, Poisson, normal, or gamma dis-
tribution. Let the prior for (θ , m) be given by the HPP (2.5). Then, p(m|y, λ, λ0, μ0) →
πHPP

(
m

∣∣∣n + λ0, nȳ+λ0μ0
n+λ0

)
as λ → ∞.

In words, Theorem 2.1 states that as λ → ∞, the marginal prior of m under the HPP is conjugate
density. Hence, even as λ → ∞, the posterior distribution of m is nondegenerate. Because the marginal
prior for m in the HPP is conjugate in the limit, Theorem 2.1 provides an approximation for the posterior of
m for large values of λ in terms of recognizable densities (e.g., a gamma distribution for Poisson models).

An important consequence of Theorem 2.1 is E(m|y, λ, λ0, μ0) → (nȳ +λ0μ0)/(n+λ0) as λ → ∞, so
that the posterior mean of m converges to a convex combination of the observed sample mean, ȳ, and the
elicited prior prediction, μ0. This is closely related to, but quite different than, the posterior distribution
of μ using the DY prior. The parameter μ is a model parameter, while the hierarchical parameter m is a
prediction for μ. We provide a formal proof for Theorem 2.1 in Section 1 of the Supplementary material
available at Biostatistics online.

COROLLARY 2.2 Given the same setup as Theorem 2.1, limλ→∞ p(μ|y, λ, λ0, μ0) → πHPP

(
μ

∣∣∣n + λ0,

nȳ+λ0μ0
n+λ0

)
.

The proof of Corollary 2.2 is obtained from noting that as λ → ∞, p(μ|m, y, λ, λ0, μ0) converges to a
point mass at m and p(m|y, λ, λ0, μ0) converges to πHPP(m|n +λ0, (nȳ +λ0μ0)/(n +λ0)) by Theorem 2.1.
In words, Corollary 2.2 states that, as λ → ∞, the posterior distribution for the mean parameter, μ, under
the HPP converges to the posterior density under the DY prior with precision parameter n + λ0 and mean
parameter (nȳ + λ0μ0)/(n + λ0), which is precisely the same posterior distribution obtained by eliciting
λ = λ0 and m = μ0 in the DY prior (2.2). When λ ≤ n (as is typically the case), the HPP cannot have
more influence on the posterior than the likelihood. This fact and Corollary 2.2 imply that if λ → ∞ and
λ0 ≤ n or λ0 → ∞ and λ ≤ n, the posterior distribution of μ cannot depend more on the prior than the
data.

REMARK 2.3 By transforming the mean parameter, μ, to the canonical parameter θ , it is easy to see from
Corollary 2.2 that p(θ |y, λ, λ0, μ0) → πDY(θ |n + λ0, (nȳ + λ0μ0)/(n + λ0)) as λ → ∞, therefore, the
posterior density of θ under the HPP converges to that under the DY prior, with shape parameter equal to
a convex combination of the sample mean and prior prediction.
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6 E. M. ALT AND OTHERS

REMARK 2.4 For the i.i.d. normal case, the HPP induces a conjugate prior on θ = μ for finite λ. The
difference between the DY prior and the HPP for the normal case is that the prior variance of μ under the
HPP is larger than the DY prior for λ0 < ∞.

3. THE REGRESSION CASE

In this section, we develop the HPP and illustrate its properties for GLMs. We also derive the posterior
distribution of the regression coefficients for the normal linear model under the HPP. Furthermore, we
discuss the posterior distribution of the hierarchical parameter m, which is a vector for GLMs, and how
possible efficiency gains may be achieved even when some of the components of the prior prediction,
μ0, are inaccurate. Finally, we discuss how to implement the HPP computationally to obtain posterior
samples.

3.1. The HPP for GLMs

Throughout this section, suppose we observe {(yi, xi), i = 1, . . . , n}, where yi is a response variable and
xi is a p × 1 vector of covariates associated with subject i, which may include an intercept term. Suppose
E(yi) = μi, where g(μi) = x′

iβ, where β is a p × 1 vector of regression coefficients. The function g is
referred to as the μ-link function. The likelihood function of y = (y1, . . . , yn)

′ may be written as

f (y|φ, β, X ) =
n∏

i=1

exp
[

1

ai(φ)

{
yiθ(x′

iβ) − b(θ(x′
iβ))

} + c(yi, φ)

]
, (3.9)

where θ(·) = ḃ−1 ◦ g−1(·) is referred to as the θ -link function and the functions b and c index the density
or mass function. We assume ai(φ) = φ for i = 1, . . . , n is known and fixed, and we may suppose without
loss of generality that φ = 1. Chen and Ibrahim (2003) showed that the likelihood (3.9) admits a conjugate
prior of the form

πCI(β|λ, m) = 1

Z(λ, λm)
exp

[
λ

{
m′θ(Xβ) − J ′b(θ(Xβ))

}]
, β ∈ Rp, (3.10)

where Z(λ, λm) = ∫
Rp exp

[
λ

{
m′θ(Xβ) − J ′b(θ(Xβ))

}]
dβ is the normalizing constant, which has no

closed-form expression in general, λ > 0 is a precision parameter controlling for the informativeness of
the prior, m is a n-dimensional shape parameter that may be interpreted as a prior prediction for E(y), and
the function b is taken componentwise. The prior (3.10), which we refer to as the “CI prior,” is proper when
the design matrix has full rank (Chen and Ibrahim, 2003). An alternative characterization of propriety is if,
treating m as observed data and using a uniform improper prior, the posterior is proper. When m is fixed,
Chen and Ibrahim (2003) showed that the posterior is p(β|λ, m) = πCI (β |1 + λ, (y + λm)/(1 + λ)) .
Typically, λ ∈ (0, 1] so that the effective sample size contributed by the prior does not exceed that of the
data. Note that, similar to the i.i.d. case, the posterior distribution of β for fixed m has a shape parameter
that is a convex combination of the observed data y and prior prediction m. Thus, it is clear that the
posterior under the CI prior is sensitive to the choice of m.

One of the challenges encountered when using the CI prior (3.10) is that it is difficult to quantify
uncertainty surrounding the value of m. That is, the CI prior treats m as observed data. While the precision
hyperparameter λ controls for the degree of influence of the prior on the posterior, it does not explicitly
reflect uncertainty in the prior prediction. Moreover, elicitation of m is typically based on expert opinion
or summary statistics, and, thus, it is natural to view m as having a probability distribution.
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Hierarchical prediction prior for generalized linear models 7

To this end, we now derive the hyperprior. Let ν = ḃ−1(m), where the function ḃ−1 is taken component-
wise. We may elicit π(ν|λ0, μ0) ∝ exp

[
λ0

{
ν ′μ0 − J ′b(ν)

}] = ∏n
i=1 exp [λ0 {νiμ0i − b(νi)}] , ν ∈ �n,

where λ0 > 0 is a precision parameter and μ0 ∈ [ḃ(�)]n is a n-dimensional vector giving the prior
prediction for E(y), which may depend on covariates. In general, one may utilize a separate precision
parameter for each component of ν, but we will proceed with a common precision parameter for notational
convenience (allowing each component to have its own precision is discussed in Section 4).

Using π(ν|λ0, μ0), the hyperprior is obtained using the transformation m = ḃ(ν), i.e.,

πHPP(m|λ0, μ0) ∝
n∏

i=1

exp
[
λ0

{
ḃ−1(mi)

′μ0i − b(ḃ−1(mi))
}] 1

v(mi)
, m ∈ ḃ(�)n, (3.11)

where v(x) = b̈ ◦ ḃ−1(x) is the variance function of the family. Note that the hyperprior (3.11) is a product
of n-independent densities, each having the same form as the i.i.d. case (2.4), where each component of m
has its own mean. The hyperprior is thus a product of n-independent recognizable densities (e.g., beta for
binomial models, gamma for Poisson models, inverse-gamma for gamma models, and normal for normal
models). An attractive feature of the HPP is that, if covariates and regression coefficients are ignored, the
HPP is a conjugate prior for each component of y. For example, if y = (y1, . . . , yn)

′ is a collection of
Bernoulli random variables each with mean μi, {mi, i = 1, . . . , n} is a priori a collection of n-independent
beta random variables with mean μ0i and dispersion parameter λ0.

The HPP for regression models is thus given by

πHPP(β, m|λ, λ0, μ0) = πCI(β|λ, m) πHPP(m|λ0, μ0). (3.12)

The marginal prior of β under the HPP is thus the CI prior conditional on m averaged over a distribution
on m. As uncertainty surrounding the prior prediction decreases, i.e., for larger values of λ0, the marginal
prior of β under the HPP will become more similar to the CI prior. In particular, as λ0 → ∞, the HPP
and the CI priors coincide.

Using the HPP (3.12), the joint posterior density may be written as

p(β, m|y, λ, λ0, μ0) ∝ πCI

(
β

∣∣∣∣1 + λ,
y + λm

1 + λ

)
Z(1 + λ, y + λm)

Z(λ, λm)
πHPP(m|λ0, μ0). (3.13)

Thus, the joint posterior density may be expressed as the product of the posterior under the CI prior with
shape parameter (y + λm)/(1 + λ) and a density over m, which depends on the observed data y and the
prior prediction μ0.

The HPP for GLMs is similar to a hierarchical conditional means prior (CMP) for GLMs (Bedrick and
others, 1996). For the CMP, p potential response and covariate pairs (ỹi, x̃i) are elicited, where p is the
number of regression coefficients. The ỹi’s may be interpreted as a prior prediction for the mean response
based on covariate x̃i. A prior inducing an a priori correlation structure on the regression coefficients
may be obtained by treating each ỹi, i = 1, . . . , p as random (e.g., by utilizing the hyperprior of the
HPP). However, it may be difficult to justify a choice for the p potential covariate vectors x̃i. By contrast,
specification of μ0 is straightforward because it is simply a prior prediction of the mean response for each
of the n observations, potentially based on observed (rather than potential) covariates.

While closed forms for the prior and posterior distributions under the HPP are not available in general,
they are available for the normal linear model since the normalizing constant of the CI prior has a closed-
form solution. We summarize the main results in the following theorem:
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8 E. M. ALT AND OTHERS

THEOREM 3.1 Suppose we possess data D = {(yi, xi), i = 1, . . . , n}, where yi ∼ N (x′
iβ, σ 2). We assume

σ 2 is known, and we may assume without loss of generality that σ 2 = 1. Let the HPP be given by (3.12).
Then, if X is full column rank,

(1) πHPP(β, m|λ, λ0, μ0) = φp+n

((
β

m

)∣∣∣∣
(

β̂μ0
μ0

)
,
(

(λ−1 + λ−1
0 )(X ′X )−1 λ−1

0 (X ′X )−1X ′

λ−1
0 X ′(X ′X )−1 λ−1

0 I n

))
,

(2) p(β|λ, λ0, μ0) = φp(β|μβ , (1 + λH)−1(X ′X )−1),

(3) p(m|λ, λ0, μ0) = φn

(
m

∣∣∣μm,
(
λ0I n + λ

1+λ
H

)−1
)

,

where φp(·|a, C) is the p-dimensional multivariate normal density function with mean a and covariance
matrix C , β̂μ0

= (X ′X )−1X ′μ0, μβ = (1 + λH)−1β̂ + [1 − (1 + λH)−1]β̂μ0
, λH = (λ0λ)/(λ0 + λ),

μm = �μ0 + (I n − �)ŷ, � = (λ0I n + λ

1+λ
H )−1, and H = X (X ′X )−1X ′.

The proof of Theorem 3.1 is presented in Section 2 of the Supplementary material available at Bio-
statistics online. Part 1 of Theorem 3.1 indicates that the prior mean of β is the MLE based on treating
the prior prediction μ0 as data. Part 2 of Theorem 3.1 says that the posterior mean of β under the HPP is
a convex combination of the MLE β̂ and β̂μ0

. Note that whenever λ ≤ 1, λH < 1, so that the posterior

mean of β is closer to the MLE than β̂μ0
.

Part 3 of Theorem 3.1 says that the posterior distribution of m under the HPP is a convex combination
of the prior prediction μ0 and the predicted values ŷ = X β̂. We discuss in detail the important role
that the posterior distribution of m has in Section 3.2. Note that, as λ → ∞, λH → λ0, and thus

p(m|λ, λ0, μ0) → φn

(
m|�̃μ0 + (I n − �̃)ŷ, (λ0I n + H )−1

)
as λ → ∞, which is a nondegenerate density.

Since λH → λ0 as λ → ∞, we have p(β|λ, λ0, μ0) → φp(β|(β̂ + λ0β̂0)/(1 + λ0), (1 + λ0)
−1(X ′X )−1)

as λ → ∞, which is equal to the posterior density under the prior πCI(β|λ0, μ0). Part 3 of Theorem 3.1
generalizes Theorem 2.1 for the normal linear model.

For more details about the HPP for the normal linear model, we refer the reader to Section 2 of the
Supplementary material available at Biostatistics online. In particular, we establish a formal relationship
between the HPP, the CI prior, and a multivariate normal prior for the regression coefficients.

3.2. The posterior distribution of the hierarchical parameter

We now discuss the posterior distribution of m. We will see that the posterior distribution of m has important
implications on the posterior distribution of the regression coefficients.

We may write the posterior distribution of m under the HPP as

p(m|y, λ, λ0, μ0) ∝ Z(1 + λ, y + λm)

Z(λ, λm)
πHPP(m|λ0, μ0), (3.14)

where Z(a, c) = ∫
exp [a {(c′/a)θ(Xβ) − b(θ(Xβ))}] is the normalizing constant of the CI prior (3.10),

which has no general closed-form solution. For the i.i.d. case, it was shown in Section 2.2 that, as λ → ∞,
the posterior mean of m is between the prior prediction μ0 and the MLE μ̂ = ȳ.

When λ is treated as random and m is treated as fixed (e.g., the hyper-g prior of Sabanés Bové and Held
(2011)), the posterior distribution of λ reflects how accurate the prior prediction is overall. For example, if
many of the prior predictions are inaccurate and some are highly accurate, the posterior distribution of λ

may be concentrated near 0, so that the prior has little influence on the posterior. Conversely, in the HPP, m
is treated as random and λ is fixed, so that the posterior always borrows from the HPP. The HPP discounts
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Hierarchical prediction prior for generalized linear models 9

at the prediction level, so that it is possible for efficiency gains, such as lower mean squared error (MSE),
to be made even when some of the prior predictions are inaccurate. In Section 6, we conduct a large-scale
simulation study suggesting that, when the prior prediction is incompatible, the posterior under the HPP
exhibits lower bias and MSE and better credible region (CR) coverage than selected priors.

For the normal linear model, Part 3 of Theorem 3.1 indicates that the posterior distribution of m under
the HPP is multivariate normal with mean E(m|y) = �μ0+(I n−�)ŷ, where � = (

λ0I n + λ

1+λ
H

)−1
λ0I n,

H = X (X ′X )−1X ′ is the orthogonal projection operator onto the space spanned by the columns of X ,
and ŷ = X β̂ is the predicted values of y, where β̂ is the MLE of β. Details of the derivation are given
in Section 2.2 of the of the Supplementary material available at Biostatistics online. Hence, the posterior
mean of m for the normal linear model is a convex combination of the prior prediction μ0 and the predicted
values ŷ. Note that for larger values of λ (i.e., when more information from the prior is borrowed) and for
fixed values of λ0, the posterior mean of m depends more on the predicted values than the prior prediction.
This fact and the relationship (3.14) illustrate the robustness of the HPP, namely, the posterior distribution
of the regression coefficients is averaged over a distribution depending on the prior prediction μ0, but
highly modified by the data y. Figures A.2 and A.3 of the Supplementary material available at Biostatistics
online show that, for Poisson and logistic regression examples, the posterior mean of m was between the
predicted values and μ0.

3.3. Computational development

We now discuss how to obtain posterior samples under the HPP. We develop a Laplace approximation to
the normalizing constant of the CI prior.

The joint posterior may be written as

p(β, m|y, λ, λ0, μ0) ∝ πCI

(
β

∣∣∣∣1 + λ,
y + λm

1 + λ

)
πHPP(m|λ0, μ0)

Z(λ, λm)
. (3.15)

While posterior inference in the i.i.d. case is analytically tractable, that for the regression setting is more
complicated because the normalizing constant Z(λ, λm) in (3.15) does not have a closed form in general.

Taking a similar approach as Sabanés Bové and Held (2011), we may utilize an integrated Laplace
approximation to estimate the normalizing constant. Note that πCI(β|a, b/a) is proportional to the likeli-
hood of a GLM with response variable b and inverse dispersion parameter a with link function θ . Thus,
we may utilize maximum likelihood methods to efficiently obtain, for each proposed value m̃ of m, β̂m̃,
the value of β that maximizes πCI(β|1 + λ, (y + λm)/(1 + λ), and J (β̂m̃), the observed information
matrix evaluated at the maximizer. A Laplace approximation to the normalizing constant Z(λ, λm) of

the prior (3.10) is given by ẐL(λ, λm) ≡ (2π)1/2 | λJ (β̂m) |−1/2 exp
[
λ

{
m′θ(X β̂m) − J ′b(θ(X β̂m))

}]
.

Because ẐL is a nonstochastic estimator of the normalizing constant, we may utilize Hamiltonian MCMC
for posterior sampling, such as the highly efficient No-U-Turn Sampler of Hoffman and Gelman (2014)
as implemented in the R package rstan (Stan Development Team, 2020).

4. PRIOR ELICITATION VIA SUMMARY STATISTICS

In this section, we describe how the HPP may be utilized when we possess summary statistics from a
previous study obtained, for example, from a publication. We compare and contrast our approach with the
PP of Ibrahim and Chen (2000).
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10 E. M. ALT AND OTHERS

Suppose that we possess historical data with covariates, say, D0 = {(y0i, x0i), i = 1, . . . , n0}. The PP
for GLMs is given by

πPP(β|a0, D0) ∝ exp
[
a0

{
y′

0θ(X 0β) − J ′b(θ(X 0β))
}]

π0(β), β ∈ Rp, (4.16)

where a0 ∈ (0, 1] is described above and π0 here is an initial prior for β, which we may take as π0(β) ∝ 1.
The PP in (4.16) is similar to CI prior with λ = a0, but y0 is a n0-dimensional vector while m in the CI
prior is a n-dimensional vector and the covariates from the historical data set, X 0, are utilized instead of
those from the current data, X . Note that the PP is quite restrictive in that it requires an IPD in order to be
used.

We may, however, utilize the MLE from the historical data, β̂0, to obtain a prior prediction for the CI
prior as μ0 = g−1(X β̂0). However, β̂0 is a statistic and each of its components has a variance, and there
is no direct mechanism for implementing this uncertainty into the CI prior.

By contrast, using the HPP, we may elicit uncertainty surrounding the prior prediction μ0 via the
precision parameter λ0 via the delta method. In particular,

Var
{

g−1
(

x′
iβ̂0

)}
≈ x′

iCov(β̂0)xi{
ġ ◦ g−1(x′

iβ̂0)
}2 ≡ τ0i, i = 1, . . . , n. (4.17)

Typically, previous studies report only the estimated standard errors, {σ̂0j, j = 1, . . . , p}, of β̂0 instead of its
estimated covariance matrix. In such cases, we may substitute �̂ = diag{σ̂ 2

0j, j = 1, . . . , p} for Cov(β̂0) in

(4.17), providing a reasonable approximation for τ0i in (4.17), say, τ̂0i as τ̂0i =
∑p

j=1 x2
ij σ̂

2
0j{

ġ◦g−1(x′
i β̂0)

}2 , i = 1, . . . , n.

Once an estimate τ̂0i for τ0i is obtained, we may compute μ0i = g−1(x′
iβ̂0) and find λ0i such that

Var(mi) = τ̂0i, i = 1, . . . , n. For example, if the outcomes are binary then mi is beta and hence
τ0i = μ0i(1 − μ0i)/(λ0i + 1) so that we may elicit λ0i = μ0i(1−μ0i)

τ0i
− 1. Here, we allow each compo-

nent of m to have its own precision. That is, we augment the hyperprior (3.11) to πHPP(m|λ0, μ0) ∝∏n
i=1 exp

[
λ0i

{
ḃ−1(mi)μ0i − (b ◦ ḃ−1)(mi)

}]
1

v(mi)
, where λ0 = (λ01, . . . , λ0n)

′ is a n-dimensional vector
of precision parameters. We stress that the hyperparameters λ0 and μ0 in the example described are
not elicited based on an individual’s opinion. Rather, the hyperparameters are deterministic functions of
summary statistics from a previous study.

Both the HPP and the PP induce an a priori correlation structure on the regression coefficients. However,
with the PP, the correlation structure depends on the observed historical response variable y0 and design
matrix X 0. By contrast, the correlation structure in the HPP is based on the current design matrix X , the
prior prediction μ0 = g−1(X β̂0), and the prior precision λ0. When one is in possession of an IPD, the
PP may be used, which is less computationally demanding and has various desirable properties (see, e.g.,
Ibrahim and others, 2015a). However, the HPP may be used more generally, as it only requires a prior
prediction for the mean response and associated uncertainty. These values may be obtained (i) through
expert opinion (see, e.g., Section 3 of the Supplementary material available at Biostatistics online); (ii)
using summary statistics from published studies; or (iii) using MLEs obtained from an IPD and the delta
method to elicit a prior prediction and associated uncertainty for the mean.

When the parameter a0 in the PP (4.16) is treated as fixed, the prior can be highly influential on the
posterior density. For example, in Section 5, we generate a historical data set with a positive treatment
effect and a current data set with a null treatment effect. For the incompatible setting, the posterior under
the PP suggested that treatment was all but certain to be efficacious. By contrast, the posterior density
of the treatment effect under the HPP suggested that treatment may be unbeneficial, which is the correct
result based on how the current data were generated.
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Hierarchical prediction prior for generalized linear models 11

5. DATA APPLICATION WITH A PREVIOUS STUDY

In this section, we show results applying the proposed HPP against other priors for two generated historical
data sets. The other selected priors are the CI prior, the PP of Ibrahim and Chen (2000), and a “Gaussian
power prior” (GPP), which is an approximation to the asymptotic PP of Ibrahim and others (2015a) and
is given by πGPP(β|μβ , �β , λ) ∝ [

(2π)−1/2 | �β |−1/2 exp
{− 1

2 (β − μβ)′�−1
β (β − μβ)

}]λ
, where μβ is

the prior mean of β and �β is the prior covariance matrix of β. We assume for the GPP that only the ML
estimates and associated standard errors are available from the previous study, and we elicit μβ = β̂ and

�β = diag{σ̂j, j = 1, . . . , p}, where β̂ = (β̂1, . . . , β̂p)
′ is a vector of MLEs for the regression coefficients

and σ̂j is the standard error for the jth coefficient, j = 1, . . . , p. The GPP is precisely equivalent to the
asymptotic PP, except the off-diagonal elements of �β are set to 0. The reason for this is, in practical
situations where a prior is being formulated on the basis of results in published studies, the full covariance
matrix of the MLEs is not typically reported (typically, only the standard errors are reported).

The PP will use a full historical data set, while hyperparameter elicitation for the three remaining
priors will utilize the maximum likelihood estimates (MLEs) and standard errors. For the HPP, λ0 will
be elicited based on the standard errors as described in Section 4. For the GPP, the prior variance of the
regression coefficients will be set equal to the squared standard errors. All analyses were performed using
Hamiltonian Monte Carlo (HMC) via the rstan package.

5.1. The generated data sets

Following Ibrahim and Chen (2000), we use the ACTG036 study to generate data. The ACTG036 study
was a clinical trial comparing AZT with a placebo in asymptomatic patients with hereditary coagulation
disorders (hemophilia). The outcome variable was CD4 count, defined to be the number of CD4 cells
(a type of white blood cell that destroys bacteria and fights off infection) per cubic millimeter of blood.
Covariates included in the model were treatment (x1i = 1 if subject i received AZT, 0 otherwise), race
(x2i = 1 if subject i was white, 0 otherwise), and age (x3i), treated as a continuous variable. We assume
a Poisson regression model with canonical link. The likelihood function for the current data is given by
L(β|y, X ) = exp

[∑n
i=1

{
yix′

iβ − exp(x′
iβ)

}]
, where n = 75 is the sample size of the current data, yi is

the CD4 count for subject i, xi = (1, x1i, x2i, x3i)
′, and β = (β0, β1, β2, β3)

′. Henceforth, we denote the
current data by D = {(yi, xi), i = 1, . . . , n}. Historical data of size n0 = 50 was generated from the same
model, giving the data set D0 = {(y0i, x0i), i = 1, . . . , n0}. The quantities β0, β2, and β3 were obtained
directly from the MLEs of the ACTG036 data set. For the historical data, the treatment effect was set
equal to the MLE of the ACTG036 study, that is, β1 ≈ 0.048. Two current data sets were generated: an
“incompatible” current data set, where β1 = 0, and a “compatible” data set, where β1 ≈ 0.048.

5.2. Results

Prior and posterior density plots for the treatment effect for the compatible and incompatible current data
sets are depicted in Figure 1. The left panel depicts prior and posterior densities when the historical and
current data are incompatible. The right panel shows the prior and posterior densities when the data sets
are compatible. Of the four prior densities, the HPP yields the highest prior variance for the treatment
effect β1 (i.e., it is the least informative prior). When λ ∈ {0.75, 1.00}, the HPP is the only prior that places
mass around the null, while the other three priors suggest that treatment is all but certain to be efficacious
a priori. Since the CI prior, which is the most informative prior, is a special case of the HPP, we see that,
for a fixed value of λ, the HPP was the most flexible prior to expressing uncertainty.

When the current data are incompatible with the historical data, i.e., when β1 = 0 for the current data
and β1 ≈ 0.048 for the historical data, the posterior distribution of β1 utilizing the HPP is generally more
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Fig. 1. Prior and posterior densities of the treatment effect for the generated data under various levels of borrowing
(λ). The historical data suggest efficacy (β1 = 0.048). The incompatible current data were generated from β1 = 0,
while that for the compatible was generated from β1 = 0.048.
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Hierarchical prediction prior for generalized linear models 13

robust than its competitors (in the sense of placing the most mass on a nonpositive treatment effect).
When enabling the prior to have as much influence on the posterior as the data, (i.e., when λ = 1.00), the
posterior densities under the CI prior, GPP, and PP suggest treatment is all but certain to be efficacious. In
contrast, the posterior density under the HPP suggests that treatment could be unbeneficial, which is the
correct result.

When the two data sets are compatible, i.e., when β1 ≈ 0.048 for both the current and historical data
sets, the four posterior densities are quite similar. Across the various levels of λ, the posterior densities
from all four priors suggest that treatment is efficacious a posteriori. The posterior means across the four
priors and all levels of λ are essentially the same, although the GPP yielded a somewhat higher posterior
mean than the other priors. While increasing λ reduced the posterior variance markedly for the three
competitor priors, the posterior under the HPP was virtually unchanged by the level of λ.

For this application, the effect of λ on the prior and the posterior densities of the treatment effect under
the HPP is relatively marginal. When the data sets are incompatible, increasing the value of λ from 0.50
to 0.75 increases the posterior mean of the treatment effect by 14%. By contrast, the same change for the
PP yields roughly a 29% increase, more than twice as much. This suggests that, when each component of
the prior prediction for the HPP is given its own level of precision, the posterior density under the HPP is
much less sensitive to increasing values of λ than the other priors.

The primary advantage of the HPP over the CI prior is that it allows practitioners to incorporate
uncertainty in the prior guess in a flexible way. However, the HPP adds computational cost since the
normalizing constant of the CI prior must be estimated. The GPP induces an a priori independent prior
on the regression coefficients, which is not realistic practically. By contrast, the HPP induces a correlation
structure a priori on the regression coefficients. The primary advantage of the PP over the HPP is that the
PP is more computationally efficient. However, we have seen that the PP can be quite informative when
λ is fixed, with high posterior probability that β1 is positive in the incompatible data setting. By contrast,
the posterior under the HPP suggests a nonzero chance that β1 ≤ 0 when the data sets are incompatible.
Moreover, the PP is somewhat restrictive in that it requires access to a full historical data set.

6. PREPOSTERIOR ANALYSIS

Although the data analysis example in Section 5 is insightful, it does not take into account Monte Carlo
error in the generated data. Using the same historical data set for the prior, we generate M = 5000 current
data sets from the Poisson regression model above. Let β̂1 denote the posterior mean of β1. We compute

bias as b̂ias = 1
M

∑M
i=1

(
β̂

(m)

1 − β∗
1

)
, MSE as M̂SE = 1

M

∑M
i=1

(
β̂

(m)

1 − β∗
1

)2
, where β∗

1 is the truth, and

95% CR using the 2.5 and 97.5 percentiles of the posterior samples.
Results from the simulation exercise are presented in Table 1. When the data sets are compatible, bias

is zero to three decimal places across all methods. The i.i.d. results in the highest MSE. This is intuitive
since, in Section 5, it was discussed how the i.i.d. is the least informative prior. Note that the MSE under
the CI prior is larger than the PP and the GPP when n = 50 but smaller when n ≥ 75. This is due to the data
proportionality issue, i.e., for the CI prior and HPP, the prior sample size is approximately λn whereas it is
approximately λn0 for the PP and the GPP. Note that the CR coverage across all four priors and simulation
scenarios is well above 95%, which is to be expected from an informative prior that is compatible with
the data. For compatible data sets, the posterior under the HPP has the lowest CR coverage by about 1–2
percentage points compared to the other priors.

However, when the data sets are incompatible, the HPP outperforms the other three priors with respect
to bias, MSE, and CR coverage. The minimal 95% CR coverage probability is approximately 0.88.
Conversely, the minimal CR coverage probability for the CI prior, PP, and GPP are 0.10, 0.45, and 0.47,
respectively. These results agree with the data analysis results represented in Figure 1 in the main text,
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14 E. M. ALT AND OTHERS

where it is shown that the other three priors are quite informative, resulting in strong evidence of treatment
efficacy despite the incompatibility. The relative MSE for the three competing priors is all larger than 1.
The HPP is also the only prior for which the second decimal of bias is zero. To conclude, the HPP performs
worse than the nonhierarchical priors when there is a little-to-no prior-data conflict but outperforms the
other selected priors when the two data sets are incompatible.

Table 1. Characteristics of the posterior under the HPP compared with other priors for compatible
and noncompatible data sets

Compatible Incompatible

Rel. Ave. CR CR Rel. Ave. CR CR
n λ Prior Bias MSE width coverage Bias MSE width coverage

50 0.50 HPP −0.00032 1.00 0.061 0.973 0.00802 1.00 0.062 0.943

CI −0.00025 0.64 0.055 0.985 0.01630 1.46 0.055 0.836

PP −0.00026 0.61 0.054 0.986 0.01666 1.49 0.054 0.821

GPP −0.00025 0.62 0.054 0.985 0.01624 1.44 0.055 0.836

0.75 HPP −0.00031 1.00 0.060 0.974 0.00897 1.00 0.061 0.936

CI −0.00021 0.49 0.051 0.991 0.02086 1.91 0.051 0.677

PP −0.00023 0.47 0.050 0.990 0.02107 1.94 0.050 0.656

GPP −0.00022 0.48 0.050 0.991 0.02072 1.88 0.050 0.679

1.00 HPP −0.00030 1.00 0.060 0.975 0.00954 1.00 0.060 0.930

CI −0.00019 0.39 0.047 0.993 0.02427 2.35 0.048 0.474

PP −0.00020 0.37 0.046 0.995 0.02434 2.36 0.047 0.454

GPP −0.00020 0.38 0.047 0.994 0.02406 2.30 0.047 0.474

75 0.50 HPP −0.00032 1.00 0.049 0.973 0.00786 1.00 0.050 0.925

CI −0.00026 0.64 0.044 0.985 0.01618 1.76 0.044 0.740

PP −0.00029 0.79 0.046 0.981 0.01241 1.32 0.047 0.851

GPP −0.00028 0.80 0.047 0.980 0.01198 1.27 0.047 0.861

0.75 HPP −0.00032 1.00 0.049 0.975 0.00882 1.00 0.049 0.915

CI −0.00022 0.49 0.041 0.991 0.02076 2.38 0.041 0.490

PP −0.00027 0.65 0.044 0.987 0.01636 1.70 0.044 0.729

GPP −0.00025 0.67 0.044 0.986 0.01593 1.64 0.044 0.748

1.00 HPP −0.00031 1.00 0.048 0.975 0.00940 1.00 0.049 0.909

CI −0.00020 0.39 0.038 0.995 0.02418 2.96 0.038 0.238

PP −0.00024 0.54 0.041 0.990 0.01947 2.10 0.042 0.561

GPP −0.00023 0.56 0.042 0.990 0.01908 2.03 0.042 0.589

(Continued)
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Table 1. Continued.

Compatible Incompatible
Rel. Ave. CR CR Rel. Ave. CR CR

n λ Prior Bias MSE width coverage Bias MSE width coverage

100 0.50 HPP −0.00022 1.00 0.042 0.966 0.00801 1.00 0.043 0.909

CI −0.00017 0.64 0.038 0.983 0.01629 1.98 0.038 0.642

PP −0.00022 0.90 0.041 0.970 0.01006 1.17 0.042 0.869

GPP −0.00021 0.92 0.042 0.970 0.00965 1.12 0.042 0.878

0.75 HPP −0.00021 1.00 0.042 0.969 0.00896 1.00 0.042 0.891

CI −0.00015 0.49 0.035 0.991 0.02085 2.71 0.035 0.324

PP −0.00020 0.78 0.039 0.978 0.01353 1.46 0.040 0.763

GPP −0.00019 0.80 0.040 0.979 0.01309 1.40 0.040 0.783

1.00 HPP −0.00021 1.00 0.042 0.971 0.00953 1.00 0.042 0.883

CI −0.00013 0.39 0.033 0.995 0.02426 3.36 0.033 0.098

PP −0.00019 0.68 0.038 0.985 0.01638 1.80 0.038 0.625

GPP −0.00017 0.69 0.038 0.983 0.01594 1.72 0.038 0.652

Rel. MSE = relative mean squared error; CR = 95% credible region.

We note that none of the selected priors were hierarchical priors. In Section 7 of the Supplementary
material available at Biostatistics online, we conduct simulations to compare the HPP with the normalized
asymptotic power prior (NAPP) (Ibrahim and others, 2015b) and the CP of Hobbs and others (2012). We
find that the HPP and the NPP outperform the CP in all scenarios for the selected hyperparameters of the
CP, although we acknowledge that a different set of hyperparameters could lead to a different conclusion.
The NAPP had roughly half the MSE of the HPP when the data sets were compatible, but the MSE was
at least 4.8 times higher than the HPP when data sets were incompatible. Furthermore, the HPP was the
only prior that yielded at least 88% interval coverage through all simulation scenarios.

While the discussion thus far has been on analyzing a single parameter, we note that one of the strengths
of the HPP is having a prior whose components are correlated a priori. To demonstrate this strength, in
Section 3.2 of the Supplementary material available at Biostatistics online, we present simulation results
predicting the mean response in a logistic regression example. The results indicate that the HPP can
improve finite sample performance.

7. DISCUSSION

We have developed the HPP for GLMs. The HPP is simple and intuitive (e.g., for logistic regression
models, the hyperprior is simply a product of independent beta priors, which is a conjugate prior for
each component of the response vector). However, we note that the development is flexible—any (proper)
hyperprior with support on the mean of the responses may be utilized in practice. For example, for
logistic regression models, we may elicit independent truncated normal priors for m over [0, 1] centered at
μ0.
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The incorporation of uncertainty in the prior prediction of the mean of the responses has a natural
practical application. As the prior prediction for the mean of the response typically comes in the form of
historical data and/or expert opinion, there is uncertainty surrounding the elicited value. In Section 3 of
the Supplementary material available at Biostatistics online, we show posterior quantities under the HPP
and the CI prior to a logistic regression model using the data of Finney (1947) under the context where
the hyperprior is formulated on the basis of expert opinion. We show that the posterior distribution under
the HPP is less sensitive to the prior prediction than under the CI prior, particularly when the elicited prior
prediction is incompatible with the observed data.

An area of future exploration is an HPP for time-to-event data. While the idea of eliciting a prior
prediction for the mean survival time is straightforward, it is not clear how to handle the right-censored
data in such a prior. In longitudinal data, the development of an HPP may be particularly useful since m
could be elicited as a mean prediction for each individual. Finally, an important area of exploration is an
HPP for overdispersed data. In Section 6 of the Supplementary material available at Biostatistics online, we
conduct a Poisson analysis of negative binomial data, comparing results with frequentist approaches and
the priors presented in Section 5, proposing a possible solution to handle overdispersion in count data with
an HPP. We find that, in general, interval coverage is poor for all priors when analyzing negative binomial
data as Poisson. However, the proposed method to handle overdispersion for the HPP outperformed other
priors.

SOFTWARE AND DATA

Software for implementing all priors is available at github.com/ethan-alt/hpp. An analysis example using
the Finney data is provided in Appendix 3 of the Supplementary material available at Biostatistics online.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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