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Background

Recurrent event data are increasingly common in clinical
trials. Designs based on more time-to-event measurements
(i.e., recurrent events) provide greater efficiency and power
compared to designs using only one time-to-event endpoint
(Chen et al., 2014).
In situations with recurrent events and a terminating event
(e.g., death), a patient’s clinical experience will be
characterized by both event processes and the two processes
are generally dependent on one another.
The censorship of recurrent events is no longer
non-informative, but instead depends on the terminating
event (Rondeau et al., 2007).
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Summary

We develop a Bayesian clinical trial design focused on
evaluating an investigational product’s (IP’s) effect on both
recurrent and terminating event processes considered as
multiple primary endpoints, using a multi-frailty joint model.
Inferences for the multiple primary outcomes are based on
posterior model probabilities corresponding to mutually
exclusive hypotheses regarding the benefit of IP with respect
to the two event processes.
We demonstrate the methodology by designing a colorectal
cancer clinical trial with a goal of demonstrating the IP causes
a favorable effect on at least one of the two outcomes but no
harm on either.
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Notation

Using notation similar to Rondeau et al. (2007), assume the
ith patient has a terminating event at time Di or is censored
at time Ci and Xij is the jth recurrent event for j = 1, ..., ni ,
where ni is the total number of observed recurrent events or
censoring for patient i .
Define Tij = min(Xij ,Di ,Ci ) as the observed recurrent event
times with δij = I(tij = Xij) indicating whether the jth
recurrent event occurred.
Define T ∗i = min(Di ,Ci ) as the last observed time for the ith
patient, which is either a time of terminating event or
censoring. Let δ∗i = I(T ∗I = Di ) denote the indicator for
whether the patient is censored or not.
The gap time (i.e., time-between-events) is then given by
Sij = Tij − Ti ,j−1 with Ti0 = 0 for the recurrent event hazard
function.
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Multi-frailty Joint Model

For the ith patient, the multi-frailty joint model of hazard
functions for the recurrent event and terminating event using
gap times can be written as equations (1) and (2),
respectively,

ri (s|µi , νi ) = µiνi r0(s) exp(ziγr + x ′irβr ) = µiνi ri (s) (1)
λi (t|µi ) = µiλ0(t) exp(ziγλ + x ′iλβλ) = µiλi (t) (2)

zi is the IP indicator, xir and xiλ are the vectors of covariates
for the recurrent and terminating event hazard functions,
respectively.
γr , βr and r0(t) are treatment effect, vector of coefficient
parameters and piecewise constant baseline hazard function
for the recurrent event model.
γλ, βλ and λ0(t) are the analogous quantities for the
terminating event model.
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Multi-frailty Joint Model

The frailty µi ∼ Gamma(1/θ, 1/θ) accounts for the
dependence between the two event processes and the frailty
νi ∼ Gamma(1/η, 1/η) accounts for dependence between
recurrent event times. The two frailties are assumed to be
independent from each other.
Conditional on the frailty νi , the gap times for the same
patient are mutually independent.
The association parameter θ controls the strength of
dependence between the two event processes and, conditional
on the variance parameter η, a larger θ reflects a stronger
dependence between the recurrent and terminating events.
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Likelihood

Let D be the observed data for n patients. Denote
ψ = (γ, β, λ0, r0, θ, η) as the full set of parameters, where
γ = (γr , γλ) and β = (βr , βλ).
For the ith patient, the likelihood contribution conditional on
µi , νi takes the form:

Li (ψ|µi , νi ,D) =
ni∏

j=1

{
µiνi r0(Tij)ezi γr +x ′ir βr }δij exp{−µiνiR0(T ∗i )ezi γr +x ′ir βr

}
× {µiλ0(T ∗i )ezi γλ+x ′iλβλ}δ∗i exp{−µi Λ0(T ∗i )ezi γλ+x ′iλβλ}

where R0(t) and Λ0(t) are the cumulative piecewise constant
baseline hazard functions corresponding to r0(t) and λ0(t),
respectively.
The complete data likelihood contribution for the ith patient
is obtained by multiplying the likelihood above by the
distribution for the frailties.
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Study Design

We consider a design to demonstrate the superiority of an IP
compared to a control with respect to recurrent and
terminating events as multiple primary outcomes.
We follow patients for both recurrent and terminating events
starting at baseline.
For each patient, recurrent events are documented until a
fixed time or the occurrence of the terminating event. If the
recurrent and terminating events occur at the same time, only
the terminal event is recorded.
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Superiority Test

In order to test whether the IP has benefit to at least one of
the two event processes and no harm to either, we consider
the following group of hypotheses:

H1 : exp(γr ) > δr or exp(γλ) > δλ

H2 : exp(γr ) > δr and exp(γλ) = δλ

H3 : exp(γr ) = δr and exp(γλ) > δλ

H4 : exp(γr ) = δr and exp(γλ) = δλ

H5 : exp(γr ) < δr and exp(γλ) = δλ

H6 : exp(γr ) = δr and exp(γλ) < δλ

H7 : exp(γr ) < δr and exp(γλ) < δλ

We consider the union of H1, H2, H3 and H4 as the null
hypothesis (i.e. H0 = H1 ∪ H2 ∪ H3 ∪ H4) with the alternative
as the union of H5, H6 and H7 (i.e. Ha = H5 ∪ H6 ∪ H7).
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Superiority Test
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Figure 1: Depiction of the null and alternative hypothesis space.

The gray shaded region (including the coordinate axis boundaries but not
the origin) corresponds to the alternative and the complement of the
aforementioned space (including the origin) corresponds to the null
hypothesis. The hypothesized treatment effects are -0.3 on both
recurrent and terminating event processes.
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Basis and Hypothesis Models

Assume M̃j is the model corresponding to hypotheses Hj , for
j = 1, ..., 7.
Consider the model space of the treatment parameter vector
(γr , γλ), let B1 denote the full model (i.e., neither treatment
parameter fixed), B2 and B3 define the models with γλ and γr
fixed, respectively, and B4 denotes the model having both
parameters fixed.
We refer to models Bi , i = 1, ..., 4 as the Basis models and
M̃j , j = 1, ..., 7 as the Hypothesis models.
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Basis and Hypothesis Models

Table 1: Relationship between Basis and Hypothesis models.

Hypothesis Hypothesis Model Basis Model

H0

M̃1 B1
M̃2 B2
M̃3 B3
M̃4 B4

Ha

M̃5 B2
M̃6 B3
M̃7 B1
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Posterior Model Probabilities (PMP’s)

Let Ej be an indicator that γ takes a value in the parameter
space associated with hypothesis Hj , for j = 1, ..., 7.
One can show that the posterior probabilities for the null and
alternative hypotheses, respectively, take the form

P(H0|D) = P(M̃1|D) + P(M̃2|D) + P(M̃3|D) + P(M̃4|D)
= P(B1|D) · P(E1|B1,D) + P(B2|D) · P(E2|B2,D)
+ P(B3|D) · P(E3|B3,D) + P(B4|D)

P(Ha|D) = P(M̃5|D) + P(M̃6|D) + P(M̃7|D)
= P(B2|D) · P(E5|B2,D) + P(B3|D) · P(E6|B3,D)
+ P(B1|D) · P(E7|B1,D)

where P(Ej |Bk ,D) can be easily obtained by computing the
proportion of MCMC samples that satisfy Hj given Bk .
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Posterior Model Probabilities (PMP’s)

We adapt the methods of Chen (1994) and Chen and Shao
(1997) to estimate P(Bk |D), k = 1, 2, 3, 4.
For φ = (ψ, µ, ν), let φ(Bk ) be the vector of parameters in
Basis model Bk that are free to vary. Write
φ = (φ(−Bk ),φ(Bk )) where φ(−Bk ) is the complementary set
of parameters that are fixed under model Bk .
Based on the MCMC sample {φ(i), i = 1, ...,N} from the full
model B1, the posterior probability of model Bk can be
estimated as

p̂(Bk |D) =
1
N
∑N

i=1

(
L(φ(Bk )

(i) )π(φ(Bk )
(i) )w(φ(−Bk )

(i) |φ(Bk )
(i) )

L(φ(i))π(φ(i))

)
p(Bk)

∑2P

p=1
1
N
∑N

i=1

(
L(φ(Bp )

(i) )π(φ(Bp )
(i) )w(φ(−Bp )

(i) |φ(Bp )
(i) )

L(φ(i))π(φ(i))

)
p(Bp)
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Prior Model Probabilities

Under the assumption that γr ⊥⊥ γλ, we have the prior
distribution π(γ) = π(γr )π(γλ).
Both π(γr ) and π(γλ) are specified as mixture distributions
with π(γr ) = πr · 1(γr = ∆0r ) + (1− πr ) · fr (γr ) and
π(γλ) = πλ · 1(γλ = ∆0λ) + (1− πλ) · fλ(γλ), where
∆0r = log(δr ) and ∆0λ = log(δλ), fr (·) and fλ(·) are
Normal(ωr , σ

2
r ) and Normal(ωλ, σ2λ), respectively.

The prior model probabilities for the Basis models are:

P(B1) = (1− πr )(1− πλ)
P(B2) = (1− πr )πλ

P(B3) = πr (1− πλ)
P(B4) = πrπλ
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Prior Model Probabilities

The induced prior model probabilities for the Hypothesis
models are then defined as

P(M̃1) = P(B1){1− Fλ(∆0λ)Fr (∆0r )}
P(M̃2) = P(B2){1− Fr (∆0r )}
P(M̃3) = P(B3){1− Fλ(∆0λ)}
P(M̃4) = P(B4)
P(M̃5) = P(B2)Fr (∆0r )
P(M̃6) = P(B3)Fλ(∆0λ)
P(M̃7) = P(B1)Fr (∆0r )Fλ(∆0λ)

where Fr (∆0r ) =
∫
1(γr < ∆0r )fr (γr )dγr = Φ( ∆0r−ωr

σr
) and

Fr (∆0λ) =
∫
1(γλ < ∆0λ)fλ(γλ)dγλ = Φ( ∆0λ−ωλ

σλ
) where Φ(·)

is the CDF of the standard normal distribution.
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Prior Model Probabilities

Without loss of generality, we assume πr = πλ = π with both
fr (·) and fλ(·) centered at 0 (i.e., ωr = ωλ = 0). Thus, we
have Fr (∆0r = 0) = Fr (∆0λ = 0) = 1

2 and for the alternative
hypothesis,

P(M̃5) + P(M̃6) + P(M̃7) = π(1− π)/2 + π(1− π)/2 + (1− π)2/4

= −3
4π

2 + 1
3π + 1

4

which is maximized at (13 ,
1
3).

Therefore, the maximum weight that the alternative
hypothesis can obtain is 1

3 , which occurs when πr = πλ = 1
3 .

17 / 39



Estimation and Inference

We consider a weighted average Bayesian type I error rate and
power, with weights determined by user-specified null and
alternative sampling prior distributions.

The null sampling prior gives non-zero weight to values of ψ
such that H0 is satisfied and the alternative sampling prior
such that Ha is satisfied.

We only consider point-mass sampling priors such that
π

(s)
0 (ψ) = 1(ψ = ψ0) and π(s)

1 (ψ) = 1(ψ = ψ1).
A general description for how to elicit non-degenerate null and
alternative sampling priors from historical data can be found
in Psioda and Ibrahim (2018).
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Estimation and Inference

For a fixed value of ψ, the null hypothesis rejection rate is
defined as r(ψ) = E [1{P(Ha|D) ≥ p0}|ψ].

Then the Bayesian type I error rate and power are defined as

α(s) = E [r(ψ)|π(s)
0 ] and 1− β(s) = E [r(ψ)|π(s)

1 ]

which are weighted averages of r(ξ) with weights determined
by π(s)

0 (ψ) and π(s)
1 (ψ).
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Sample Size Determination (SSD)

We want to determine the smallest v such that the Bayesian
type I error rate and power are controlled at level α(s) and
1− β(s), respectively.

The number of patients enrolled in the trial may be chosen to
obtain a specified number of events in a specified interval of
time on average.

Let the sample size and number of events be given by n and
v , respectively. We consider an approach that fixes the ratio
r = n

v but varies the number of events.
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Example: Bayesian Clinical Design for Colorectal Cancer

We consider a colorectal cancer study conducted at Hospital
Universitary in L’Hospitalet, Spain (González et al., 2005).
The study investigated sex based inequalities in hospital
readmission among patients diagnosed with colorectal cancer.
There were 403 patients diagnosed between January 1996 and
December 1998 and they were actively followed up until 2002.
Hospital readmission times related to colorectal cancer after
surgery were collected, with mortality also recorded during
follow up.
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Example: Bayesian Clinical Design for Colorectal Cancer

We consider a design evaluating an IP (e.g., chemotherapy)
with respect to hospital readmission times and mortality as
multiple primary outcomes.
For each patient, readmission to a hospital was recorded until
some fixed time (e.g., 6 years) or the occurrence of the
terminating event.
Patients were randomized to two treatment arms using a 1:1
allocation scheme and the accrual rate was simulated to be
uniform over a 1 year period.
Censoring (i.e., dropout) was assumed to follow a mixture
distribution with a 0.05 probability of dropout and,
conditional on being a dropout, the time to dropout was
uniform over a 6 year period.
We included a binary covariate (male vs female) which was
simulated such that approximately 50% of the subjects were
females.
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Example: Bayesian Clinical Design for Colorectal Cancer

We assumed piecewise constant baseline hazards for both the
recurrent and terminating hazard functions.
For the treatment effects, we proposed the hypothesized
effects on both hospital readmission and mortality as
∆1r = ∆1λ = −0.3 but also allowed various sampling priors.
The prior distributions for the treatment effects on both event
processes are the same as π(γ) = 1

3 · 1(γ = 0) + 2
3 · N(0, 0.6),

where γ is used here to represent the treatment effect on the
recurrent or terminating event process.
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Example: Bayesian Clinical Design for Colorectal Cancer

We evaluate the performance of the proposed approach
against a frequentist approach through type I error rate and
power estimates.
The frequentist approach is implemented based on a one-sided
superiority test using the Cox model, with both the recurrent
and terminating event hypotheses taken to be co-primary.
The dependence between recurrent event times is accounted
for using the marginal approach of Wei et al. (1989).
The frequentist approach does not perfectly align with the
proposed Bayesian approach, as it doesn’t have the capability
to evaluate whether the IP is beneficial to at least one of the
event processes and not harmful on either, whereas the
Bayesian approach does.

24 / 39



Results: Type I Error Rate

Table 2: Type 1 error rate estimates

Model Bayes Freq Rec Ter
Type I error rate 0.002 0.006 0.053 0.047

Bayes: Bayesian testing approach based on multiple primary outcomes.
Freq: Frequentist testing approach for co-primary outcomes.
Rec: Test of treatment effect on the recurrent event process.
Ter: Test of treatment effect on the terminating event process.

Table 2 shows the estimates under the scenario where there is
no treatment effect on either the recurrent or terminating
event hazard (i.e., γr = γλ = 0).
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Results: Bayesian Type I Error Rate
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Figure 2: Bayesian type I error rate curves.

Figure 2 presents the Bayesian estimated type I error rate curves when
the IP has a favorable effect on one event process but has no effect or
causes a modest degree of harm on the other.
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Results: Bayesian Power
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Figure 3: Bayesian estimated power curves.

We took the treatment effect on one event process equal to the
hypothesized level and varied the effect on the other event process.
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Results: SSD Example
Type I error rate
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Figure 4: Bayesian Type I error rate and power curves based on varying
numbers of required terminal events.

We considered the number of terminating events v = 350 to 500 in
increments of 25.
The treatment effects on both event processes were assumed to
equal the hypothesized level.
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Discussion: Comparisons with Frequentist Approach

For the colorectal cancer study, we compared the performance
of the proposed approach to a frequentist approach that
treated both events as co-primary.
An alternative frequentist approach is to consider the events
as multiple primary endpoints with an appropriate multiplicity
correction. The hypothesis test becomes whether the IP
shows a beneficial effect on either one of the event processes
(regardless of whether there is a harmful effect on the other).
The proposed Bayesian approach could be reformulated for
this setting but an IP that provides benefit to one event
process but harm on the other is not easily interpretable as
beneficial.
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Discussion: Use of Sampling Priors

We used point-mass sampling priors based on parameter
estimates from an analysis of the colorectal cancer data.
The Bayesian framework for power and type I error evaluation
is applicable for non-degenerate sampling priors on the
parameters as well.
For more extensive discussion on the use of non-degenerate
sampling priors, we refer the reader to the work of Psioda and
Ibrahim (2018, 2019) and the references cited therein.
General advice for how to choose the point-mass sampling
priors in the the joint model setting is also given in Xu et al.
(2020).
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Discussion: Choice of π

We proposed πr = πλ = π = 1
3 to specify the prior

distributions for treatment effects which help to indirectly
elicit the prior probabilities for the Basis and Hypothesis
models.
πr = πλ = π = 1

3 was proposed as the default when there is
little information suggesting a more appropriate choice for πr
and πλ.
The alternative space for the proposed approach includes
parameter values consistent with IP benefit on (1) both event
processes and (2) one and no effect on the other.
Our choice of π = 1

3 reflects a compromise between these two
scenarios and reflects a priori uncertainty regarding on which
event process the IP will have an effect in case (2).
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Discussion: Choice of π

Table 3: Bayesian Type I error rate and power estimates with different
choices of π

γr γλ π = 0.5 π = 1/3 π = 0.05
0 0 0.001 0.002 0.009
0 -0.3 0.133 0.079 0.057
0 -0.6 0.490 0.214 0.077

-0.3 0 0.175 0.091 0.054
-0.6 0 0.271 0.123 0.060
-0.3 -0.3 0.666 0.725 0.794

γr : Treatment effect on recurrent event process.
γλ: Treatment effect on terminating event process.
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Posterior Model Probabilities (PMP’s)

Following Chen (1994), the weight function w(φ(−Bk )|φ(Bk ))
is a completely known conditional density of φ(−Bk )|φ(Bk ),
with the optimal choice of
w(φ(−Bk )|φ(Bk )) = p(φ(−Bk )|φ(Bk ),D).
Since a closed form for p(φ(−Bk )|φ(Bk ),D) is typically not
available, Chen provided an empirical procedure to select
w(φ(−Bk )|φ(Bk )).
Specifically, we first compute the sample mean and covariance
matrix (φ̃, Σ̃) based on the MCMC samples
{φ(i), i = 1, ...,N}. Then w(φ(−Bk )|φ(Bk )) can be
approximated using the conditional density of φ(−Bk )|φ(Bk )

based on a normal approximation.
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Prior Model Probabilities

For the standard deviation in fr (·) and fλ(·), we propose using
σr = ρ · |∆1r | and σλ = ρ · |∆1λ| where ∆1r and ∆1λ are the
hypothesized treatment effects on the recurrent and
terminating event processes, respectively.

Table 4: Power estimates with different choices of ρ

ρ 1 2 3 4 5
Power 0.701 0.725 0.706 0.687 0.688

We took ρ = 2 for modeling fitting because it allows the
highest Bayesian power estimates under the default priors.
The Bayesian power estimate is not sensitive to the choice of
ρ.
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Colorectal Cancer Data Analysis

Table 5: Nuisance parameter estimates for the colorectal cancer data.
Parameter Estimates

Model Description Parameter Posterior Mode

Frailty Models Recurrent Event Frailty η 0.046
Association Parameter θ 1.269

Recurrent Event Model

Gender βr 0.481

Baseline Hazard

log r1 -5.314
log r2 -5.951
log r3 -6.715
log r4 -6.872
log r5 -7.259

Terminating Event Model

Gender βλ 0.260

Baseline Hazard

log λ1 -8.064
log λ2 -7.900
log λ3 -8.299
log λ4 -8.224
log λ5 -8.493
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